matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenBeweis e^(x+y) mit AWP
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Beweis e^(x+y) mit AWP
Beweis e^(x+y) mit AWP < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis e^(x+y) mit AWP: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:02 So 09.10.2011
Autor: kushkush

Aufgabe
Beweisen Sie die Funktionalgleichung der Exponentialfunktion [mm] $e^{x+y}=e^{x}e^{y}$ [/mm] für alle $x,y [mm] \in \IR$ [/mm] aus der eindeutigen Lösbarkeit eines AWPs.


Hallo!


Mit $exp(x) = f(x)$ , sei $f(x)=f'(x)$ mit $f(0)=1 $ ein AWP. Ist nun $g(x):= f(-x)f(x)$, dann ist  $g'(x) = 0$ und wegen $f(0)=1$ ist $g(x) = f(-x)f(x) = 1$. Sei jetzt q(x) eine weitere Lösung des AWPs. dann muss $g'(x) = [mm] (\frac{f(x)}{q(x)})' [/mm] = [mm] f'(x)(q(x))^{-1} [/mm] - [mm] q'(x)f(x)(q(x))^{-2} [/mm] = 1 $ sein.  

Da g(x) konstant, muss $q(x)=cf(x) $ entsprechen. Ist nun q(x) = [mm] e^{x+y} [/mm] = [mm] ce^{x}. [/mm] Mit x=0 folgt [mm] $c=e^{y}$ [/mm] und damit [mm] $e^{x+y}=ce^{x} [/mm] = [mm] e^{y}e^{x}$ [/mm]


Reicht das so?



Bin für jegliche Korrektur sehr dankbar!


Gruss
kushkush

        
Bezug
Beweis e^(x+y) mit AWP: Antwort
Status: (Antwort) fertig Status 
Datum: 00:34 Mo 10.10.2011
Autor: pemal

Finde die Aufgabe etwas krank ...

Ich wuerde so argumentieren: Das AWP

[mm] f' = f, \quad f(0)=e^y [/mm]

hat die Loesung [mm] f(x)=e^x e^y [/mm]. Dass die Loesung eindeutig ist, sollst Du bestimmt schon wissen und hier nicht zeigen.

Da [mm] g(x) = e^{x+y} [/mm] wegen der Kettenregel ebenfalls eine Loesung des AWPs ist, muss [mm] f \equiv g [/mm] sein, mithin also

[mm] e^x e^y = e^{x+y} [/mm] fuer alle [mm] x,y [/mm].

Wo kann man schon Differentialgleichungen loesen, kennt aber nicht mal das Additionstheorem der Exponentialfunktion?

Bezug
                
Bezug
Beweis e^(x+y) mit AWP: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:44 Mo 10.10.2011
Autor: kushkush

Hallo,

> Wo kann man schon Differentialgleichungen loesen, kennt aber nicht mal das > > Additionstheorem der Exponentialfunktion?

man kann nie genug Beweise kennen.




Vielen Dank.


Gruss
kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]