matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBeweis durch vollständige Indu
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Beweis durch vollständige Indu
Beweis durch vollständige Indu < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis durch vollständige Indu: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:58 Sa 22.10.2005
Autor: MatthiasL

Hallo, habe meine erste Analysis I Vorlesung hinter mich gebracht und soll nun einen Übungsblatt barbeiten. Ich komme aber irgendwie überhaupt nicht weiter.
Vielleicht kann mir ja jemand bei den folgenden Aufgaben helfen. Wäre echt super nett.

Aufgabe 1:
Man beweise: [mm] \summe_{k=0}^{m}\vektor{n\\2k}=2^{n-1} [/mm]   für n=1,2,3,... . Dabei ist m=n/2 für gerades n, m=(n-1)/2 für ungerades n.

Aufgabe 2:
Man beweise:  [mm] \summe_{k=1}^{n}k^{3} [/mm] = [mm] (\summe_{k=1}^{n}k)^{2} [/mm]   für alle natürlichen Zahlen n.

Aufgabe 3: Für [mm] 1^{2}+3^{2}+...+(2n-1)^{2} [/mm]  gebe man einen geschlossenen Ausdruck an (mit Beweis).

Vielen Dank schonmal !

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis durch vollständige Indu: Antwort
Status: (Antwort) fertig Status 
Datum: 11:27 Mo 24.10.2005
Autor: angela.h.b.


> Hallo, habe meine erste Analysis I Vorlesung hinter mich
> gebracht und soll nun einen Übungsblatt barbeiten. Ich
> komme aber irgendwie überhaupt nicht weiter.
> Vielleicht kann mir ja jemand bei den folgenden Aufgaben
> helfen. Wäre echt super nett.

Hallo,

alle drei Aufgaben schreien nach vollständiger Induktion. Klar, oder?

Zumindest bei Aufgabe 1 und 2 kannst Du wirklich schonmal anfangen.
Erst n=1 und dann den Schluß n [mm] \to [/mm] n+1.


>  
> Aufgabe 1:
>  Man beweise: [mm]\summe_{k=0}^{m}\vektor{n\\2k}=2^{n-1}[/mm]   für
> n=1,2,3,... . Dabei ist m=n/2 für gerades n, m=(n-1)/2 für
> ungerades n.

Hier wirst Du ein bißchen was über Binominalkoeffizienten brauchen.

>  
> Aufgabe 2:
>  Man beweise:  [mm]\summe_{k=1}^{n}k^{3}[/mm] =
> [mm](\summe_{k=1}^{n}k)^{2}[/mm]   für alle natürlichen Zahlen n.
>  

> Aufgabe 3: Für [mm]1^{2}+3^{2}+...+(2n-1)^{2}[/mm]  gebe man einen
> geschlossenen Ausdruck an (mit Beweis).

Das ist ja  [mm] \summe_{k=1}^{n}(2n-1)^2= \summe_{i=1}^{n}(4n^2-4n+1) [/mm]  .   [mm] \summe_{i=1}^{n}n^2 [/mm] hattet Ihr bestimmt schon, genau wie  [mm] \summe_{i=1}^{n}n, [/mm] und  [mm] \summe_{i=1}^{n}1 [/mm] ist kein Hexenwerk. Die entsprechenden Ergebnisse addieren und "schön" umformen. So kommst Du zu Deunem geschlossenen Ausdruck.

Den wiederum mußt Du dann per Induktion beweisen.

Wenn Du dann an konkreten Stellen nicht mehr weiterkommst, kann Dir hier bestimmt geholfen werden.

Gruß v. Angela

Bezug
        
Bezug
Beweis durch vollständige Indu: Antwort
Status: (Antwort) fertig Status 
Datum: 18:17 Sa 22.10.2005
Autor: Leopold_Gast

Welcher Beweis zulässig ist, hängt natürlich immer von den Vorkenntnissen ab. Aufgabe 1 könnte man etwa so lösen:

[mm]\frac{1}{2} \left( (1+1)^n + (1-1)^n \right)[/mm]

1. Berechne diesen Term direkt, d.h. so, wie es die Klammern anzeigen.
2. Berechne diesen Term durch Anwendung des Binomischen Lehrsatzes.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]