matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstiges / DiversesBeweis durch Kontraposition
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Sonstiges / Diverses" - Beweis durch Kontraposition
Beweis durch Kontraposition < Sonstiges / Diverses < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges / Diverses"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis durch Kontraposition: Tipp
Status: (Frage) beantwortet Status 
Datum: 23:58 Do 10.11.2011
Autor: jess240890

Aufgabe
Es seien m endliche Mengen M1, . . . , Mm für ein m ∈ N>0 gegeben. Beweisen Sie die folgende Aussage:
Falls die Summe der Kardinalitäten der Mengen M1, . . . , Mm größer als n ∈ N ist, so existiert eine Menge M ∈ {M1, . . . , Mm}, deren Kardinalität größer als n/m ist.

ich komm leider nicht weiter, hoffe ihr könnt mir weiterhelfen.

formal haben ich es so interpretiert:

Für i,m [mm] \in \IN>0 [/mm] (also i,m > 0) und beliebig n [mm] \in \IN: [/mm]
  
Falls  [mm] \summe_{i=1}^{m} [/mm] |Mi| > n, dann existiert M [mm] \in [/mm] {M1,...Mm} sodass |M| > n/m

und wir müssen beweisen:


Falls  [mm] \summe_{i=1}^{m} [/mm] |Mi| < n, dann existiert M [mm] \in [/mm] {M1,...Mm} sodass |M| < n/m

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis durch Kontraposition: Antwort
Status: (Antwort) fertig Status 
Datum: 10:21 Fr 11.11.2011
Autor: M.Rex

Hallo


> Es seien m endliche Mengen M1, . . . , Mm für ein m ∈
> N>0 gegeben. Beweisen Sie die folgende Aussage:
>  Falls die Summe der Kardinalitäten der Mengen M1, . . . ,
> Mm größer als n ∈ N ist, so existiert eine Menge M ∈
> {M1, . . . , Mm}, deren Kardinalität größer als n/m
> ist.
>  ich komm leider nicht weiter, hoffe ihr könnt mir
> weiterhelfen.
>  
> formal haben ich es so interpretiert:
>  
> Für i,m [mm]\in \IN>0[/mm] (also i,m > 0) und beliebig n [mm]\in \IN:[/mm]
>  
>  
> Falls  [mm]\summe_{i=1}^{m}[/mm] |Mi| > n, dann existiert M [mm]\in[/mm]
> {M1,...Mm} sodass |M| > n/m
>  

So ist es.

> und wir müssen beweisen:
>  
>
> Falls  [mm]\summe_{i=1}^{m}[/mm] |Mi| < n, dann existiert M [mm]\in[/mm]
> {M1,...Mm} sodass |M| < n/m

Das stimmt leider nicht.
Kontraposition bedeutet, dass man anstatt [mm] A\Rightarrow B[/mm] folgendes zeigt: [mm] \neg B\Rightarrow\neg A[/mm], hier also:
[mm]\frac{n}{m}\leq|M|\Rightarrow n\leq\summe_{i=1}^{m}|M_{i}|[/mm]

Marius

Bezug
                
Bezug
Beweis durch Kontraposition: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 15:18 Fr 11.11.2011
Autor: jess240890

mhh ok ich verstehe... aber wenn wir folgendes haben:

[mm] \summe_{i=1}^{n} [/mm] |Mi| > n [mm] \Rightarrow [/mm] |M| > [mm] \bruch{n}{m} [/mm]

müssen wir dann nicht folgedes beweisen:

[mm] \bruch{n}{m} [/mm] [mm] \ge [/mm] |M| [mm] \Rightarrow [/mm] n   [mm] \ge [/mm]   [mm] \summe_{i=1}^{n} [/mm] |Mi|

anstatt:

[mm] \bruch{n}{m} [/mm] [mm] \le [/mm] |M| [mm] \Rightarrow [/mm] n [mm] \le [/mm] [mm] \summe_{i=1}^{n} [/mm] |Mi|

oder irre ich mich da?


Bezug
                        
Bezug
Beweis durch Kontraposition: Antwort
Status: (Antwort) fertig Status 
Datum: 16:24 Fr 11.11.2011
Autor: schachuzipus

Hallo jess240890,


> mhh ok ich verstehe... aber wenn wir folgendes haben:
>  
> [mm]\summe_{i=1}^{n}[/mm] |Mi| > n [mm]\Rightarrow[/mm] |M| > [mm]\bruch{n}{m}[/mm]
>  
> müssen wir dann nicht folgedes beweisen:
>  
> [mm]\bruch{n}{m}[/mm] [mm]\ge[/mm] |M| [mm]\Rightarrow[/mm] n  [mm]\ge[/mm]  [mm]\summe_{i=1}^{n}[/mm]  |Mi|
>  
> anstatt:
>  
> [mm]\bruch{n}{m}[/mm] [mm]\le[/mm] |M| [mm]\Rightarrow[/mm] n [mm]\le[/mm] [mm]\summe_{i=1}^{n}[/mm]
> |Mi|
>  
> oder irre ich mich da?

Nein, du irrst nicht, genauer lautet die Aussage formal (unter den gegebenen Voraussetzungen):

[mm]\sum\limits_{i=1}^m\left|M_i\right| \ > \ n \ \ \Rightarrow \ \ \exists M\in\{M_1,M_2,\ldots,M_m\}: \left|M\right| \ > \ \frac{n}{m}[/mm]

Mit Kontraposition ist dies äquivalent zu:

[mm]\forall M\in\{M_1,M_2,\ldots,M_m\}:\frac{n}{m} \ \ge \ \left|M\right| \ \ \Rightarrow \ \ n \ \ge \ \sum\limits_{i=1}^m\left|M_i\right|[/mm]



Gruß

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges / Diverses"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]