matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionBeweis durch Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Induktion" - Beweis durch Induktion
Beweis durch Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis durch Induktion: Umformung
Status: (Frage) beantwortet Status 
Datum: 11:11 Sa 30.10.2010
Autor: zoj

Brauche Hilfe bei der Umformung der Gleichung.
Bei der Aufgabe muss ich folgendes beweisen:

[mm] \summe_{k=1}^{n} [/mm] k * k!  = (n+1)!-1

Habe den Induktions-Schritt durchgeführt, sodass nun folgende Zeile da Steht:

(n+1)! -1 + (n+1)(n+1)! // Nun muss ich die Gleichung so umformen, dass ((n+1)+1)!-1 da steht.

Dazu könnte ich ja  (n+1)! ausklammern, das Problem ist die -1. Da habe ich keinen Vorfaktor (n+1)! den ich ausklammern könnte.

Wie kann ich denn (n+1)! ausklammern?

        
Bezug
Beweis durch Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:13 Sa 30.10.2010
Autor: Sax

Hi,

klammere ihn nur aus den Summanden aus. die (n+1)! enthalten.
Die 1 brauchst du doch sowieso noch einzeln.

Gruß Sax.

Bezug
                
Bezug
Beweis durch Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Sa 30.10.2010
Autor: zoj

Danke für den Tipp!

habe nun folgendes da stehen:

(n+1)! ( 1 + n+1 ) -1
= (n+1)! ( n+ 2) -1

Nun habe ich hier noch eine Formel:
n!(n+1) = (n+1)!

Wenn ich diese nun anwende steht folgendes:

n!(n+1)(n+2) -1

Hmm, das bringt mich nicht weiter...


Bezug
                        
Bezug
Beweis durch Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:26 Sa 30.10.2010
Autor: schachuzipus

Hallo zoj,


> Danke für den Tipp!
>  
> habe nun folgendes da stehen:
>  
> (n+1)! ( 1 + n+1 ) -1 [ok]
>  = (n+1)! ( n+ 2) -1 [ok] [mm](\star)[/mm]
>  
> Nun habe ich hier noch eine Formel:
>  n!(n+1) = (n+1)! [ok]

Schreibe hier mal [mm] $k!\cdot{}(k+1)=(k+1)!$ [/mm]

Dann musst du die Formel auf $k=n+1$ anwenden, ersetze jedes $k$ durch $n+1$ !

>  
> Wenn ich diese nun anwende steht folgendes:
>  
> n!(n+1)(n+2) -1 [ok] umständlich, aber richtig!

Ja, was ist denn [mm]\red{n!\cdot{}(n+1)}\cdot{}\blue{(n+2)}[/mm]?

Doch [mm]=\red{(n+1)!}\cdot{}\blue{(n+2)}[/mm] (was ja auch oben schon steht)

[mm]=(n+2)![/mm]

Damit also [mm](\star)=(n+2)!-1[/mm]

>  
> Hmm, das bringt mich nicht weiter...

Doch doch!

Gruß

schachuzipus



Bezug
                                
Bezug
Beweis durch Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:52 Sa 30.10.2010
Autor: zoj

Wow, danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]