matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweiseBeweis durch Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Induktionsbeweise" - Beweis durch Induktion
Beweis durch Induktion < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis durch Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:55 Fr 19.03.2010
Autor: Humbold

Aufgabe
Aufgabenstellung: Man zeige durch vollständige Induktion: Für jedes [mm] n\ge [/mm] 0 gilt.

[mm] \summe_{k=0}^{n} (p+k)=\bruch{1}{2}*(n+1)*(2p+n) [/mm]    

Beim Induktionsanfang hab ich für n=1 eingesetzt:

[mm] (p+1)=\bruch{1}{2}*(1+1)*(2p+1) [/mm]

dann erhalte ich

p+1=2P+1

oder? An sich müsste ja Links das gleiche wie rechts stehen.
Um dann mit den eigendlichen Induktionsschritt beginnen zu können.
also in etwa:
Aufgabe: [mm] \summe_{k=0}^{n} [/mm] a+n=b+n
I.A. n=1
a+1=b+1
I.S. n=n+1

a+(n+1)+b=b+(n+1)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.





        
Bezug
Beweis durch Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:20 Fr 19.03.2010
Autor: pythagora

Hi,
> Aufgabenstellung: Man zeige durch vollständige Induktion:
> Für jedes [mm]n\ge[/mm] 0 gilt.
>  
> [mm]\summe_{k=0}^{n} (p+k)=\bruch{1}{2}*(n+1)*(2p+n)[/mm]  
> Beim Induktionsanfang hab ich für n=1 eingesetzt:
>  
> [mm](p+1)=\bruch{1}{2}*(1+1)*(2p+1)[/mm]
>
> dann erhalte ich
>
> p+1=2P+1
>  
> oder? An sich müsste ja Links das gleiche wie rechts
> stehen.

Tut es auch (bei dir natürlich gerade nicht)--> du hast dich verrechnet auf der linken Seite der Gleichung
[mm] \summe_{k=0}^{n} [/mm] (p+k)(mit [mm] n=1)\not=p+1 [/mm]
du musst erst mit k=0 rechnen und dann mit k=1, so wie man es auch mit dem summenzeichen macht^^ verständlich??

>  Um dann mit den eigendlichen Induktionsschritt beginnen zu
> können.
>  also in etwa:
>  Aufgabe: [mm]\summe_{k=0}^{n}[/mm] a+n=b+n
>  I.A. n=1
>  a+1=b+1
>  I.S. n=n+1
>  
> a+(n+1)+b=b+(n+1)

für was steht a bzw. b???

LG
pythagora

Bezug
                
Bezug
Beweis durch Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Fr 19.03.2010
Autor: Humbold

Danke erst einmal für deine Hilfe, Pythagora

wenn ich für k=0 und n=1 einsetzte
erhalte ich dann:

p+0=2p+1

Nur wie bringt mich das weiter?
Zu dem unteren eigend lich wollte ich damit sagen dass ich das Prinzip des beweisens durch vollständge Indunktion verstanden habe

Bezug
                        
Bezug
Beweis durch Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Fr 19.03.2010
Autor: leduart

Hallo
1. ist das nichts anderes als [mm] n*p+\summe_{k=0}^{n}k) [/mm]
und die Summe  hast du sicher schon mal bewiesen.
2. geht die Induktion doch über n
für n=0 hast du
[mm] \summe_{k=0}^{0}k+p=0+p=p [/mm] ;
rechts [mm] \bruch{1}{2}\cdot{}(n+1)\cdot{}(2p+n)=p [/mm] $
jetzt nur noch von n nach n+1

Gruss leduart

Bezug
                        
Bezug
Beweis durch Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Fr 19.03.2010
Autor: pythagora

Hi,
für n=1 wäre das so:
[mm] \summe_{k=0}^{n} (p+k)=\bruch{1}{2}\cdot{}(n+1)\cdot{}(2p+n) [/mm]
[mm] =[red](p+0)[/red]+(p+1)=\bruch{1}{2}\cdot{}(1+1)\cdot{}(2p+1) [/mm]
=p+p+1=2p+1
=2p+1=2p+1

oki??

LG
pythagora

Bezug
                                
Bezug
Beweis durch Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:33 Fr 19.03.2010
Autor: Humbold

Danke für eure Hilfe. Ihr habt mir sehr geholfen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]