matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesBeweis der Stetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Sonstiges" - Beweis der Stetigkeit
Beweis der Stetigkeit < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis der Stetigkeit: Stetigkeit bei linearen Funkti
Status: (Frage) beantwortet Status 
Datum: 18:55 Di 04.09.2007
Autor: henning210489

Aufgabe
f(x) = 2 für -1<=x<=-0,5
Prüfen Sie, ob D = R. Untersuchen Sie, ob f für x0=1 einen eindeutigen Grenzwert besitzt. Was läßt sich an dieser Stelle über die Stetigkeit aussagen? Hat f Unstetigkeitsstellen? Von welcher Art sind sie?

"Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt."

Wie soll ich bei einer linearen Funktion den links- und rechtsseitigen Grenzwert bestimmen, da ich ja kein x habe welches ich durch (x0-h) oder (x0+h) ersetzen kann?!?!
Desweiteren weiß ich nicht wie ich den Beweis der Stetigkeit, dass f(x0) gleich dem Grenzwert ist, anführen soll?!?

HILFE *ggg*

        
Bezug
Beweis der Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:09 Di 04.09.2007
Autor: Teufel

Hi!

Stetig in einem Punkt [mm] x_0 [/mm] ist eine Funktion, wenn:
[mm] f(x_0) [/mm] existiert
und
[mm] \limes_{x\rightarrow x_0}f(x) [/mm] existiert.

Jetzt musst du noch beachten, dass laut Aufgabenstellung nur der Bereich von -1 bis -0,5 zur Funktion gehört! Sie ist also keine durchgehende Gerade.

Bezug
                
Bezug
Beweis der Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 Di 04.09.2007
Autor: henning210489

ja aber wie soll ich f(x0) berechnen?!?!

Bezug
                        
Bezug
Beweis der Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Di 04.09.2007
Autor: Teufel

Die Funktion f(x)=2 ist eine parallele zur x-Achse und schneidet die y-Achse bei 2. Könntest sie auch als f(x)=0x+2 schreiben... nun siehst du ja, egal welches x du einsetzt, es kommt immer 2 raus.
Aber bei dieser Aufgabe ist der Definitionsbereich auf D=[-1;-0,5] beschränkt.
Damit liegt das [mm] x_0=1 [/mm] nicht mehr im Definitionsbereich und das mit dem Grenzwert an der Stelle (der ohne die Beschränkung auch einfach nur 2 wäre) kannst du dir sparen.



Bezug
                                
Bezug
Beweis der Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:10 Di 04.09.2007
Autor: henning210489

hey,
dann is ja alles klar, danke ;-)

Bezug
                                        
Bezug
Beweis der Stetigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:15 Di 04.09.2007
Autor: Teufel

Kein Problem :) fehlen nur noch die letzten Teilaufgaben.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]