matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Beweis der Stetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - Beweis der Stetigkeit
Beweis der Stetigkeit < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis der Stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:26 Fr 05.01.2007
Autor: ueberforderter_Ersti

Aufgabe
Für n [mm] \in \IN [/mm] seien die Funktionen [mm] f_{n}: \IR \to \IR [/mm] deiniert durch [mm] f_{n}(x):= \bruch{nx}{5+|nx|} [/mm]
Zeige dass alle Funktionen [mm] f_{n} [/mm] stetig sind

Ich habe mir versucht verschiedene Skizzen zu machen für verschiedene n, die Stetigkeit ist mir auch einigermassen einleuchtend, nur habe ich keine Ahnung wie man Stetigkeit beweisen kann.
Funktionswert = Grenzwert
Leider weiss ich nicht wie ich das anwenden kann, könnte mir hier jemand helfen?
Vielen Dank im Vorraus!

p.s. Ich habe diese Frage auf keine andere Internetseite gestellt.

        
Bezug
Beweis der Stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 Fr 05.01.2007
Autor: angela.h.b.


> Für n [mm]\in \IN[/mm] seien die Funktionen [mm]f_{n}: \IR \to \IR[/mm]
> deiniert durch [mm]f_{n}(x):= \bruch{nx}{5+|nx|}[/mm]
>  Zeige dass
> alle Funktionen [mm]f_{n}[/mm] stetig sind
>  Ich habe mir versucht verschiedene Skizzen zu machen für
> verschiedene n, die Stetigkeit ist mir auch einigermassen
> einleuchtend, nur habe ich keine Ahnung wie man Stetigkeit
> beweisen kann.
>  Funktionswert = Grenzwert
>  Leider weiss ich nicht wie ich das anwenden kann, könnte
> mir hier jemand helfen?


Hallo,

Du kannst Dir die Funktionen ja abschnittweise definiert aufschreiben.

A. Für n=0 hat man [mm] f_0(x):=0. [/mm]   Hier erübrigen sich sowieso weitere Überlegungen, denn die Stetigkeit dieser Funktion ist klar.

B. Für n>0  hat man:

[mm] f_n(x):=\begin{cases} \bruch{nx}{5+nx}, & \mbox{für } x\ge 0 \mbox{ } \\ \bruch{nx}{5-nx}, & \mbox{für } x< 0 \mbox{ } \end{cases} [/mm]

Man sieht, daß es nur eine kritische Stelle gibt, an welcher überhaupt die Stetigkeit infrage steht, die Stelle x=0.

Ist an dieser Stelle [mm] \limes_{x\rightarrow 0}f(x)=f(0) [/mm] ?
Irgendwie ja schon, oder? Man muß es nur beweisen...

Ein bißchen kommt es jetzt darauf an, wie Ihr Grenzwerte von Funktionen und Stetigkeit eingeführt habt.

ICH würde es mit dem [mm] \varepsilon -\delta-Kriterium [/mm] für Stetigkeit (kam es vor?) beweisen:

Du nimmst Dir ein [mm] \varepsilon>0, [/mm] wähltst ein dazu passendes [mm] \delta:= [/mm] ??? (die konkrete Wahl verschieb auf später, wenn Du weißt, was paßt!), betrachtest die x in einer [mm] \delta-Umgebung [/mm] von 0, also die x mit [mm] |x-0|<\delta, [/mm] und zeigst:  [mm] |f(x)-f(0)|<\varepsilon. [/mm]

C. n<0.   Analog.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]