matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesBeweis der Identität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - Beweis der Identität
Beweis der Identität < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis der Identität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:39 Mi 09.01.2008
Autor: domenigge135

Hallo. Ich habe mal eine ganz wichtige und dringende Frage. Und zwar sollen wir die Identität für alle zulässigen x,y [mm] \in \IR [/mm] beweisen.

a) cosh(x-y)=cosh(x)cosh(y)-sinh(x)sinh(y)
b) [mm] arcosh(x)=ln(x+\wurzel[]{x^2-1}) [/mm]

Zunächst ist mein Problem, dass ich nicht weiß, was mit Identität gemeint ist. Mein nächstes Problem liegt darin, dass ich keine Ahnung habe, wie ich hier rangehen soll!

Wäre für jede Hilfe echt dankbar.

Mit freundlichen Grüßen domenigge135

        
Bezug
Beweis der Identität: Definition
Status: (Antwort) fertig Status 
Datum: 09:46 Mi 09.01.2008
Autor: Roadrunner

Hallo Domenigge!


Mit "Identität beweisen" sollst Du jeweils die Gleichheit von rechter und linker Seite der Gleichung zeigen sollst.

Verwende dafür jeweils die Definition der Hyperbelfunktionen mit:
[mm] $$\cosh(x) [/mm] \ := \ [mm] \bruch{1}{2}*\left(e^x+e^{-x}\right)$$ [/mm]
[mm] $$\sinh(x) [/mm] \ := \ [mm] \bruch{1}{2}*\left(e^x-e^{-x}\right)$$ [/mm]

Bei Aufgabe b.) musst Du also $y \ = \ [mm] \bruch{1}{2}*\left(e^x+e^{-x}\right)$ [/mm] nach $x \ = \ ...$ umstellen.


Gruß vom
Roadrunner


Bezug
                
Bezug
Beweis der Identität: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 10:33 Mi 09.01.2008
Autor: domenigge135

Okay!!! Also gut ich probiers nochmal.

Ich habe gegeben:

[mm] sinh(x)-sinh(y)=2cosh(\bruch{x+y}{2})\*sinh(\bruch{x-y}{2}) [/mm]

nun will ich die Identität beweisen!!!

Auf der linken Seite steht ja eigentlich:

[mm] \bruch{1}{2}\*e^x-e^-^x-\bruch{1}{2}\*e^y-e^-^y [/mm]

Damit wäre meine linke Seite eigentlich schon fertig. Um nun die Identität zu beweisen, muss ich ja auf der rechten Seite entsprechend das selbe rauskriegen.

Auf der rechten Seite steht ja eigentlich:

[mm] (cosh(x)+cosh(y))\*\bruch{sinh(x)}{2}-\bruch{sinh(y)}{2} [/mm]

Wenn ich das alles allerdings ebefalls unmschreibe, dann hebt sich das alles gegenseitig auf. Ich weiß bei der Aufgabe echt nicht mehr weiter!!! Bitte helft mir...

Bezug
                        
Bezug
Beweis der Identität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Mi 09.01.2008
Autor: domenigge135

Naja egal. Ich probier mich dort dann halt selber surchzubeißen. Bin mir halt dummerweise nur nicht sicher ob das dann auch richtig ist :-(

Bezug
                        
Bezug
Beweis der Identität: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:21 Fr 11.01.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]