Beweis der Ableitung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Zeigen Sie mit Hilfe der Kettenregel:
Für die Funktion [mm] f:\IR+\to\IR+,x \mapsto x\mapstox^a, [/mm] a Element [mm] \IR [/mm] fest, gilt:
f'(x)=ax^(a-1) |
Mein Problem bei dieser Aufgabe ist, dass ich zwar die Kettenregel kann, aber nicht weiss, was hier äußere und innere Funktion ist. Ist a die äußere und x die innere? oder umgekehrt? oder ganz anders?
Wäre für einen Tipp diesbezüglich sehr dankbar.
Wiebke
|
|
|
|
Was ich oben leider noch vergessen habe:
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:47 Di 17.06.2008 | Autor: | abakus |
> Zeigen Sie mit Hilfe der Kettenregel:
> Für die Funktion [mm]f:\IR+\to\IR+,x \mapsto x\mapstox^a,[/mm] a
> Element [mm]\IR[/mm] fest, gilt:
> f'(x)=ax^(a-1)
> Mein Problem bei dieser Aufgabe ist, dass ich zwar die
> Kettenregel kann, aber nicht weiss, was hier äußere und
> innere Funktion ist. Ist a die äußere und x die innere?
> oder umgekehrt? oder ganz anders?
> Wäre für einen Tipp diesbezüglich sehr dankbar.
>
> Wiebke
Hallo,
ich wüsste nicht, wie man hier die Kettenregel einsetzen sollte. Die wird nur (sinnvol) angewendet, wenn zwei einfache Funktionen, deren Ableitungen man bereits kennt, zu einem komplizierteren Gebilde verknüpft werden.
In dem Falle müsste man die Aufgabe unnötig verkomplizieren, statt sie zu vereinfachen, z.B. so:
[mm] f(x)=x^a=e^{a*\ln x}. [/mm] Deren Ableitung erhält man tatsächlich durch die Kettenregel, nämlich
[mm] f'(x)=e^{a*\ln x}*\bruch{a}{x}=x^a*\bruch{a}{x}=a*x^{a-1}.
[/mm]
Aber solchen Unfug wird niemand ernsthaft machen. (Ich kenne allerdings deine Lehrkräfte nicht..)
Viele Grüße
Abakus
|
|
|
|
|
Hey!
Erst mal Danke, für die schnelle Antwort...
Leider ist die Aufgabenstellung so seltsam, was mich auch verwirrt hat...
Und zu meiner Lehrkraft sag ich lieber nichts, das wäre sonst nicht so besonders nett...
Hast du denn vielleicht nen Tipp, wie ich die Ableitungsregel beweisen kann? Ich habe sie in der Schule so gesagt bekommen, und in der Vorlesung haben wir auch nicht wirklich etwas dazu gemacht...
Aber die Idee mit ln und e klingt gut, werd das mal versuchen, vielen Dank!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:13 Di 17.06.2008 | Autor: | leduart |
Hallo
vielleicht ist mit a eine rationale Zahl gemeint? a=p/q
dann könntest du [mm] (x^{1/q}^p [/mm] ableiten.
dazu brauchst du, wenn die Ableitung von [mm] x^{1/q} [/mm] noch unbekannt sein soll die Ableitung der Umkehrfkt von [mm] x^q [/mm] und bei der Herleitung kommt auch die Kettenregel vor für [mm] f(f^{-1}(x))
[/mm]
Das mit dem ln solltest du nicht machen, denn statt ln kannst du ja auch a irgendwie anders zerlegen!
Hast du die Aufgabe genau und soll es nicht vielleicht statt [mm] x^a a^x [/mm] heissen?
Das wär sinnvoll!
Gruss leduart
|
|
|
|
|
Abakus hat ganz Recht mit seiner Rechnung über die e-Funktion.
Die besagte Regel kann für natürliches a "leicht" hergeleitet werden, da es sich dann um eine ganzrationale Fkt. handelt. (Geht z.B. durch vollst. Induktion)
Ist a ein Bruch, kann man Wurzeln und Potenzen verwenden und ist damit auch schon bei der Kettenregel.
Aber was bedeutet schon [mm] x^{\wurzel2}? [/mm] Wie könnte da der Beweis aussehen?
Indem man nun das Ganze auf die e-Funktion zurückführt, mit deren Hilfe [mm] x^{\wurzel2} [/mm] berechnet werden kann (so macht es auch der Taschenrechner), benutzt man auch für die Ableitung den "Umweg" über die e-Funktion. Damit kann man mit einem Schlag alle Fälle gleichzeitig beweisen.
|
|
|
|