matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesBeweis ad Topologischer Raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - Beweis ad Topologischer Raum
Beweis ad Topologischer Raum < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis ad Topologischer Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:59 So 16.06.2013
Autor: Thomas_Aut

Aufgabe
Zeigen Sie:

Ein topologischer Raum (X,T) ist genau dann ein Hausdorffraum wenn die Diagonale [mm] \Delta [/mm] := [mm] \{(x,x) : x \in X} [/mm] in X [mm] \times [/mm] X abgeschlossen (versehen mit der Produkttopologie) ist


Also hier mein Ansatz:

Eigentlich kann ich mir die Produkttopologie sparen.

Die Aussage :

Ein topologischer Raum [mm] (X,\Tau) [/mm] ist genau dann ein Hausdorffraum wenn die Diagonale [mm] \Delta [/mm] := [mm] \{(x,x) : x \in X} [/mm] in X [mm] \times [/mm] X abgeschlossen ist , sollte unabh. von der Topologie gelten.

oder?

Nun denn ich beginne mal:

[mm] "\rightarrow" [/mm]

Sei a,b [mm] \not\in \Delta [/mm] so folgt [mm] \exists [/mm] A [mm] \in [/mm] U(a) und B [mm] \in [/mm] U(b) mit der Eigenschaft A [mm] \cap [/mm] B = [mm] \emptyset [/mm] insofern ( A [mm] \times [/mm] B ) [mm] \cap \Delta [/mm] = [mm] \emptyset. [/mm]

Nun aber auch:

Sei a [mm] \neq [/mm] b so ist natürlich (a,b) [mm] \not\in \Delta [/mm] wir ersehen wieder dass nun [mm] \exists [/mm] A [mm] \in [/mm] U(a) und B [mm] \in [/mm] U(b) mit ( A [mm] \times [/mm] B ) [mm] \cap \Delta [/mm] = [mm] \emptyset. [/mm]
und somit A [mm] \cap [/mm] B = [mm] \emptyset [/mm] .

Klappt das so?


Lg und Dank


Thomas

        
Bezug
Beweis ad Topologischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 06:23 Mo 17.06.2013
Autor: fred97


> Zeigen Sie:
>  
> Ein topologischer Raum (X,T) ist genau dann ein
> Hausdorffraum wenn die Diagonale [mm]\Delta[/mm] := [mm]\{(x,x) : x \in X}[/mm]
> in X [mm]\times[/mm] X abgeschlossen (versehen mit der
> Produkttopologie) ist
>  
> Also hier mein Ansatz:
>  
> Eigentlich kann ich mir die Produkttopologie sparen.


Wie meinst Du das ?


>
> Die Aussage :
>  
> Ein topologischer Raum [mm](X,\Tau)[/mm] ist genau dann ein
> Hausdorffraum wenn die Diagonale [mm]\Delta[/mm] := [mm]\{(x,x) : x \in X}[/mm]
> in X [mm]\times[/mm] X abgeschlossen ist , sollte unabh. von der
> Topologie gelten.
>  
> oder?
>  
> Nun denn ich beginne mal:
>  
> [mm]"\rightarrow"[/mm]
>  
> Sei a,b [mm]\not\in \Delta[/mm]


Du meinst sicher (a,b) [mm]\not\in \Delta[/mm]


> so folgt [mm]\exists[/mm] A [mm]\in[/mm] U(a) und B
> [mm]\in[/mm] U(b) mit der Eigenschaft A [mm]\cap[/mm] B = [mm]\emptyset[/mm] insofern
> ( A [mm]\times[/mm] B ) [mm]\cap \Delta[/mm] = [mm]\emptyset.[/mm]


Mit U(a) meinst Du wohl die Menge der offenen Umgebungen von a (ebenso bei U(b))

Du hast also ( A [mm]\times[/mm] B ) [mm]\cap \Delta[/mm] = [mm]\emptyset.[/mm] mit offenen Mengen A und B, wobei a [mm] \in [/mm] A und b [mm] \in [/mm] B.


Mal angenommen, A [mm]\times[/mm] B wäre offen in X [mm]\times[/mm] X.

Dann hättest Du gezeigt:

zu jedem (a,b) [mm] \in [/mm] (X [mm] \times [/mm] X) [mm] \setminus \Delta [/mm] ex. eine offene Umgebung V von (a,b) mit

     V [mm] \subseteq [/mm] (X [mm] \times [/mm] X) [mm] \setminus \Delta. [/mm]

Das würde bedeuten:  (X [mm] \times [/mm] X) [mm] \setminus \Delta [/mm] ist offen, also [mm] \Delta [/mm] ist abgeschlossen.


Also bleibt die FRage: ist A [mm]\times[/mm] B offen in X [mm]\times[/mm] X ?

FRED

>  
> Nun aber auch:
>  
> Sei a [mm]\neq[/mm] b so ist natürlich (a,b) [mm]\not\in \Delta[/mm] wir
> ersehen wieder dass nun [mm]\exists[/mm] A [mm]\in[/mm] U(a) und B [mm]\in[/mm] U(b)
> mit ( A [mm]\times[/mm] B ) [mm]\cap \Delta[/mm] = [mm]\emptyset.[/mm]
>   und somit A [mm]\cap[/mm] B = [mm]\emptyset[/mm] .
>  
> Klappt das so?
>  
>
> Lg und Dank
>  
>
> Thomas


Bezug
                
Bezug
Beweis ad Topologischer Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:08 Mo 17.06.2013
Autor: Thomas_Aut


> > Zeigen Sie:
>  >  
> > Ein topologischer Raum (X,T) ist genau dann ein
> > Hausdorffraum wenn die Diagonale [mm]\Delta[/mm] := [mm]\{(x,x) : x \in X}[/mm]
> > in X [mm]\times[/mm] X abgeschlossen (versehen mit der
> > Produkttopologie) ist
>  >  
> > Also hier mein Ansatz:
>  >  
> > Eigentlich kann ich mir die Produkttopologie sparen.
>
>
> Wie meinst Du das ?
>  
>
> >
> > Die Aussage :
>  >  
> > Ein topologischer Raum [mm](X,\Tau)[/mm] ist genau dann ein
> > Hausdorffraum wenn die Diagonale [mm]\Delta[/mm] := [mm]\{(x,x) : x \in X}[/mm]
> > in X [mm]\times[/mm] X abgeschlossen ist , sollte unabh. von der
> > Topologie gelten.
>  >  
> > oder?
>  >  
> > Nun denn ich beginne mal:
>  >  
> > [mm]"\rightarrow"[/mm]
>  >  
> > Sei a,b [mm]\not\in \Delta[/mm]
>
>
> Du meinst sicher (a,b) [mm]\not\in \Delta[/mm]
>

Ja (a,b) [mm]\not\in \Delta[/mm]

>
> > so folgt [mm]\exists[/mm] A [mm]\in[/mm] U(a) und B
> > [mm]\in[/mm] U(b) mit der Eigenschaft A [mm]\cap[/mm] B = [mm]\emptyset[/mm] insofern
> > ( A [mm]\times[/mm] B ) [mm]\cap \Delta[/mm] = [mm]\emptyset.[/mm]
>  
>
> Mit U(a) meinst Du wohl die Menge der offenen Umgebungen
> von a (ebenso bei U(b))

Ganz richtig die offenen Umgebungen um a und um b bezeichnen U(a), U(b).

>  
> Du hast also ( A [mm]\times[/mm] B ) [mm]\cap \Delta[/mm] = [mm]\emptyset.[/mm] mit
> offenen Mengen A und B, wobei a [mm]\in[/mm] A und b [mm]\in[/mm] B.
>  
>
> Mal angenommen, A [mm]\times[/mm] B wäre offen in X [mm]\times[/mm] X.
>  
> Dann hättest Du gezeigt:
>  
> zu jedem (a,b) [mm]\in[/mm] (X [mm]\times[/mm] X) [mm]\setminus \Delta[/mm] ex. eine
> offene Umgebung V von (a,b) mit
>
> V [mm]\subseteq[/mm] (X [mm]\times[/mm] X) [mm]\setminus \Delta.[/mm]
>  
> Das würde bedeuten:  (X [mm]\times[/mm] X) [mm]\setminus \Delta[/mm] ist
> offen, also [mm]\Delta[/mm] ist abgeschlossen.

genau

>  
>
> Also bleibt die FRage: ist A [mm]\times[/mm] B offen in X [mm]\times[/mm] X
> ?
>  

Hm natürlich das ergeht doch aus der Wahl der Umgebungen. A und B sind beide aus offenen Umgebungen also wieder offene Umgebungen der Punkte.
Insofern ist sowohl U(a) [mm] \times [/mm] U(b) offen als auch A [mm] \times [/mm] B offen.

oder fehlt es an was?

Lg und danke für die Rückmeldung

Thomas

> FRED
>  
> >  

> > Nun aber auch:
>  >  
> > Sei a [mm]\neq[/mm] b so ist natürlich (a,b) [mm]\not\in \Delta[/mm] wir
> > ersehen wieder dass nun [mm]\exists[/mm] A [mm]\in[/mm] U(a) und B [mm]\in[/mm] U(b)
> > mit ( A [mm]\times[/mm] B ) [mm]\cap \Delta[/mm] = [mm]\emptyset.[/mm]
>  >   und somit A [mm]\cap[/mm] B = [mm]\emptyset[/mm] .
>  >  
> > Klappt das so?
>  >  
> >
> > Lg und Dank
>  >  
> >
> > Thomas
>  


Bezug
                        
Bezug
Beweis ad Topologischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:18 Mo 17.06.2013
Autor: fred97


> > > Zeigen Sie:
>  >  >  
> > > Ein topologischer Raum (X,T) ist genau dann ein
> > > Hausdorffraum wenn die Diagonale [mm]\Delta[/mm] := [mm]\{(x,x) : x \in X}[/mm]
> > > in X [mm]\times[/mm] X abgeschlossen (versehen mit der
> > > Produkttopologie) ist
>  >  >  
> > > Also hier mein Ansatz:
>  >  >  
> > > Eigentlich kann ich mir die Produkttopologie sparen.
> >
> >
> > Wie meinst Du das ?
>  >  
> >
> > >
> > > Die Aussage :
>  >  >  
> > > Ein topologischer Raum [mm](X,\Tau)[/mm] ist genau dann ein
> > > Hausdorffraum wenn die Diagonale [mm]\Delta[/mm] := [mm]\{(x,x) : x \in X}[/mm]
> > > in X [mm]\times[/mm] X abgeschlossen ist , sollte unabh. von der
> > > Topologie gelten.
>  >  >  
> > > oder?
>  >  >  
> > > Nun denn ich beginne mal:
>  >  >  
> > > [mm]"\rightarrow"[/mm]
>  >  >  
> > > Sei a,b [mm]\not\in \Delta[/mm]
> >
> >
> > Du meinst sicher (a,b) [mm]\not\in \Delta[/mm]
> >
> Ja (a,b) [mm]\not\in \Delta[/mm]
> >
> > > so folgt [mm]\exists[/mm] A [mm]\in[/mm] U(a) und B
> > > [mm]\in[/mm] U(b) mit der Eigenschaft A [mm]\cap[/mm] B = [mm]\emptyset[/mm] insofern
> > > ( A [mm]\times[/mm] B ) [mm]\cap \Delta[/mm] = [mm]\emptyset.[/mm]
>  >  
> >
> > Mit U(a) meinst Du wohl die Menge der offenen Umgebungen
> > von a (ebenso bei U(b))
>  
> Ganz richtig die offenen Umgebungen um a und um b
> bezeichnen U(a), U(b).
>  >  
> > Du hast also ( A [mm]\times[/mm] B ) [mm]\cap \Delta[/mm] = [mm]\emptyset.[/mm] mit
> > offenen Mengen A und B, wobei a [mm]\in[/mm] A und b [mm]\in[/mm] B.
>  >  
> >
> > Mal angenommen, A [mm]\times[/mm] B wäre offen in X [mm]\times[/mm] X.
>  >  
> > Dann hättest Du gezeigt:
>  >  
> > zu jedem (a,b) [mm]\in[/mm] (X [mm]\times[/mm] X) [mm]\setminus \Delta[/mm] ex. eine
> > offene Umgebung V von (a,b) mit
> >
> > V [mm]\subseteq[/mm] (X [mm]\times[/mm] X) [mm]\setminus \Delta.[/mm]
>  >  
> > Das würde bedeuten:  (X [mm]\times[/mm] X) [mm]\setminus \Delta[/mm] ist
> > offen, also [mm]\Delta[/mm] ist abgeschlossen.
>  
> genau
>  >  
> >
> > Also bleibt die FRage: ist A [mm]\times[/mm] B offen in X [mm]\times[/mm] X
> > ?
>  >  
> Hm natürlich das ergeht doch aus der Wahl der Umgebungen.
> A und B sind beide aus offenen Umgebungen

Was meinst Du mit  "aus offenen Umgebungen" ?????

A und B sind offene Umgebungen von a bzw. b.



>  also wieder
> offene Umgebungen der Punkte.
> Insofern ist sowohl U(a) [mm]\times[/mm] U(b) offen

Was soll das denn bedeuten ????


> als auch A
> [mm]\times[/mm] B offen.

Ja, genau darum gehts: ist A [mm] \times [/mm] B offen in der Produkttopologie von X [mm] \times [/mm] X ?

FRED

>  
> oder fehlt es an was?
>
> Lg und danke für die Rückmeldung
>  
> Thomas
>  > FRED

>  >  
> > >  

> > > Nun aber auch:
>  >  >  
> > > Sei a [mm]\neq[/mm] b so ist natürlich (a,b) [mm]\not\in \Delta[/mm] wir
> > > ersehen wieder dass nun [mm]\exists[/mm] A [mm]\in[/mm] U(a) und B [mm]\in[/mm] U(b)
> > > mit ( A [mm]\times[/mm] B ) [mm]\cap \Delta[/mm] = [mm]\emptyset.[/mm]
>  >  >   und somit A [mm]\cap[/mm] B = [mm]\emptyset[/mm] .
>  >  >  
> > > Klappt das so?
>  >  >  
> > >
> > > Lg und Dank
>  >  >  
> > >
> > > Thomas
> >  

>  


Bezug
                                
Bezug
Beweis ad Topologischer Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:39 Mo 17.06.2013
Autor: Thomas_Aut


> > > > Zeigen Sie:
>  >  >  >  
> > > > Ein topologischer Raum (X,T) ist genau dann ein
> > > > Hausdorffraum wenn die Diagonale [mm]\Delta[/mm] := [mm]\{(x,x) : x \in X}[/mm]
> > > > in X [mm]\times[/mm] X abgeschlossen (versehen mit der
> > > > Produkttopologie) ist
>  >  >  >  
> > > > Also hier mein Ansatz:
>  >  >  >  
> > > > Eigentlich kann ich mir die Produkttopologie sparen.
> > >
> > >
> > > Wie meinst Du das ?
>  >  >  
> > >
> > > >
> > > > Die Aussage :
>  >  >  >  
> > > > Ein topologischer Raum [mm](X,\Tau)[/mm] ist genau dann ein
> > > > Hausdorffraum wenn die Diagonale [mm]\Delta[/mm] := [mm]\{(x,x) : x \in X}[/mm]
> > > > in X [mm]\times[/mm] X abgeschlossen ist , sollte unabh. von der
> > > > Topologie gelten.
>  >  >  >  
> > > > oder?
>  >  >  >  
> > > > Nun denn ich beginne mal:
>  >  >  >  
> > > > [mm]"\rightarrow"[/mm]
>  >  >  >  
> > > > Sei a,b [mm]\not\in \Delta[/mm]
> > >
> > >
> > > Du meinst sicher (a,b) [mm]\not\in \Delta[/mm]
> > >
> > Ja (a,b) [mm]\not\in \Delta[/mm]
> > >
> > > > so folgt [mm]\exists[/mm] A [mm]\in[/mm] U(a) und B
> > > > [mm]\in[/mm] U(b) mit der Eigenschaft A [mm]\cap[/mm] B = [mm]\emptyset[/mm] insofern
> > > > ( A [mm]\times[/mm] B ) [mm]\cap \Delta[/mm] = [mm]\emptyset.[/mm]
>  >  >  
> > >
> > > Mit U(a) meinst Du wohl die Menge der offenen Umgebungen
> > > von a (ebenso bei U(b))
>  >  
> > Ganz richtig die offenen Umgebungen um a und um b
> > bezeichnen U(a), U(b).
>  >  >  
> > > Du hast also ( A [mm]\times[/mm] B ) [mm]\cap \Delta[/mm] = [mm]\emptyset.[/mm] mit
> > > offenen Mengen A und B, wobei a [mm]\in[/mm] A und b [mm]\in[/mm] B.
>  >  >  
> > >
> > > Mal angenommen, A [mm]\times[/mm] B wäre offen in X [mm]\times[/mm] X.
>  >  >  
> > > Dann hättest Du gezeigt:
>  >  >  
> > > zu jedem (a,b) [mm]\in[/mm] (X [mm]\times[/mm] X) [mm]\setminus \Delta[/mm] ex. eine
> > > offene Umgebung V von (a,b) mit
> > >
> > > V [mm]\subseteq[/mm] (X [mm]\times[/mm] X) [mm]\setminus \Delta.[/mm]
>  >  >  
> > > Das würde bedeuten:  (X [mm]\times[/mm] X) [mm]\setminus \Delta[/mm] ist
> > > offen, also [mm]\Delta[/mm] ist abgeschlossen.
>  >  
> > genau
>  >  >  
> > >
> > > Also bleibt die FRage: ist A [mm]\times[/mm] B offen in X [mm]\times[/mm] X
> > > ?
>  >  >  
> > Hm natürlich das ergeht doch aus der Wahl der Umgebungen.
> > A und B sind beide aus offenen Umgebungen
>  
> Was meinst Du mit  "aus offenen Umgebungen" ?????
>  
> A und B sind offene Umgebungen von a bzw. b.
>  
>
>
> >  also wieder

> > offene Umgebungen der Punkte.
> > Insofern ist sowohl U(a) [mm]\times[/mm] U(b) offen
>  
> Was soll das denn bedeuten ????
>  
>
> > als auch A
> > [mm]\times[/mm] B offen.
>  
> Ja, genau darum gehts: ist A [mm]\times[/mm] B offen in der
> Produkttopologie von X [mm]\times[/mm] X ?
>  

Ja ist es. Weil:
A und B seien Umgebungen von (a,b) mit[mm] A \cap B = \emptyset[/mm]
So ist nach Definition der Produkttopologie A [mm] \times [/mm] B eine Umgebung von (a,b) und es gilt für beispielsweise alle (x,y) [mm] \in [/mm] A [mm] \times [/mm] B mit x [mm] \neq [/mm] y dass
A [mm] \times [/mm] B [mm] \cap \Delta [/mm] = [mm] \emptyset [/mm] und A [mm] \times [/mm] B [mm] \subseteq [/mm] X [mm] \times [/mm] X \ [mm] \Delta. [/mm] offen.

Richtig?

Lg Thomas

> FRED
>  >  
> > oder fehlt es an was?
> >
> > Lg und danke für die Rückmeldung
>  >  
> > Thomas
>  >  > FRED

>  >  >  
> > > >  

> > > > Nun aber auch:
>  >  >  >  
> > > > Sei a [mm]\neq[/mm] b so ist natürlich (a,b) [mm]\not\in \Delta[/mm] wir
> > > > ersehen wieder dass nun [mm]\exists[/mm] A [mm]\in[/mm] U(a) und B [mm]\in[/mm] U(b)
> > > > mit ( A [mm]\times[/mm] B ) [mm]\cap \Delta[/mm] = [mm]\emptyset.[/mm]
>  >  >  >   und somit A [mm]\cap[/mm] B = [mm]\emptyset[/mm] .
>  >  >  >  
> > > > Klappt das so?
>  >  >  >  
> > > >
> > > > Lg und Dank
>  >  >  >  
> > > >
> > > > Thomas
> > >  

> >  

>  



Bezug
                                        
Bezug
Beweis ad Topologischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 11:41 Mo 17.06.2013
Autor: fred97


> > > > > Zeigen Sie:
>  >  >  >  >  
> > > > > Ein topologischer Raum (X,T) ist genau dann ein
> > > > > Hausdorffraum wenn die Diagonale [mm]\Delta[/mm] := [mm]\{(x,x) : x \in X}[/mm]
> > > > > in X [mm]\times[/mm] X abgeschlossen (versehen mit der
> > > > > Produkttopologie) ist
>  >  >  >  >  
> > > > > Also hier mein Ansatz:
>  >  >  >  >  
> > > > > Eigentlich kann ich mir die Produkttopologie sparen.
> > > >
> > > >
> > > > Wie meinst Du das ?
>  >  >  >  
> > > >
> > > > >
> > > > > Die Aussage :
>  >  >  >  >  
> > > > > Ein topologischer Raum [mm](X,\Tau)[/mm] ist genau dann ein
> > > > > Hausdorffraum wenn die Diagonale [mm]\Delta[/mm] := [mm]\{(x,x) : x \in X}[/mm]
> > > > > in X [mm]\times[/mm] X abgeschlossen ist , sollte unabh. von der
> > > > > Topologie gelten.
>  >  >  >  >  
> > > > > oder?
>  >  >  >  >  
> > > > > Nun denn ich beginne mal:
>  >  >  >  >  
> > > > > [mm]"\rightarrow"[/mm]
>  >  >  >  >  
> > > > > Sei a,b [mm]\not\in \Delta[/mm]
> > > >
> > > >
> > > > Du meinst sicher (a,b) [mm]\not\in \Delta[/mm]
> > > >
> > > Ja (a,b) [mm]\not\in \Delta[/mm]
> > > >
> > > > > so folgt [mm]\exists[/mm] A [mm]\in[/mm] U(a) und B
> > > > > [mm]\in[/mm] U(b) mit der Eigenschaft A [mm]\cap[/mm] B = [mm]\emptyset[/mm] insofern
> > > > > ( A [mm]\times[/mm] B ) [mm]\cap \Delta[/mm] = [mm]\emptyset.[/mm]
>  >  >  >  
> > > >
> > > > Mit U(a) meinst Du wohl die Menge der offenen Umgebungen
> > > > von a (ebenso bei U(b))
>  >  >  
> > > Ganz richtig die offenen Umgebungen um a und um b
> > > bezeichnen U(a), U(b).
>  >  >  >  
> > > > Du hast also ( A [mm]\times[/mm] B ) [mm]\cap \Delta[/mm] = [mm]\emptyset.[/mm] mit
> > > > offenen Mengen A und B, wobei a [mm]\in[/mm] A und b [mm]\in[/mm] B.
>  >  >  >  
> > > >
> > > > Mal angenommen, A [mm]\times[/mm] B wäre offen in X [mm]\times[/mm] X.
>  >  >  >  
> > > > Dann hättest Du gezeigt:
>  >  >  >  
> > > > zu jedem (a,b) [mm]\in[/mm] (X [mm]\times[/mm] X) [mm]\setminus \Delta[/mm] ex. eine
> > > > offene Umgebung V von (a,b) mit
> > > >
> > > > V [mm]\subseteq[/mm] (X [mm]\times[/mm] X) [mm]\setminus \Delta.[/mm]
>  >  >  >  
> > > > Das würde bedeuten:  (X [mm]\times[/mm] X) [mm]\setminus \Delta[/mm] ist
> > > > offen, also [mm]\Delta[/mm] ist abgeschlossen.
>  >  >  
> > > genau
>  >  >  >  
> > > >
> > > > Also bleibt die FRage: ist A [mm]\times[/mm] B offen in X [mm]\times[/mm] X
> > > > ?
>  >  >  >  
> > > Hm natürlich das ergeht doch aus der Wahl der Umgebungen.
> > > A und B sind beide aus offenen Umgebungen
>  >  
> > Was meinst Du mit  "aus offenen Umgebungen" ?????
>  >  
> > A und B sind offene Umgebungen von a bzw. b.
>  >  
> >
> >
> > >  also wieder

> > > offene Umgebungen der Punkte.
> > > Insofern ist sowohl U(a) [mm]\times[/mm] U(b) offen
>  >  
> > Was soll das denn bedeuten ????
>  >  
> >
> > > als auch A
> > > [mm]\times[/mm] B offen.
>  >  
> > Ja, genau darum gehts: ist A [mm]\times[/mm] B offen in der
> > Produkttopologie von X [mm]\times[/mm] X ?
>  >  
> Ja ist es. Weil:
>  A und B seien Umgebungen von (a,b) mit[mm] A \cap B = \emptyset[/mm]
>  
> So ist nach Definition der Produkttopologie A [mm]\times[/mm] B eine
> Umgebung von (a,b) und es gilt für beispielsweise alle
> (x,y) [mm]\in[/mm] A [mm]\times[/mm] B mit x [mm]\neq[/mm] y dass
> A [mm]\times[/mm] B [mm]\cap \Delta[/mm] = [mm]\emptyset[/mm] und A [mm]\times[/mm] B [mm]\subseteq[/mm]
> X [mm]\times[/mm] X \ [mm]\Delta.[/mm] offen.
>  
> Richtig?

Ja

FRED

>  
> Lg Thomas
>  
> > FRED
>  >  >  
> > > oder fehlt es an was?
> > >
> > > Lg und danke für die Rückmeldung
>  >  >  
> > > Thomas
>  >  >  > FRED

>  >  >  >  
> > > > >  

> > > > > Nun aber auch:
>  >  >  >  >  
> > > > > Sei a [mm]\neq[/mm] b so ist natürlich (a,b) [mm]\not\in \Delta[/mm] wir
> > > > > ersehen wieder dass nun [mm]\exists[/mm] A [mm]\in[/mm] U(a) und B [mm]\in[/mm] U(b)
> > > > > mit ( A [mm]\times[/mm] B ) [mm]\cap \Delta[/mm] = [mm]\emptyset.[/mm]
>  >  >  >  >   und somit A [mm]\cap[/mm] B = [mm]\emptyset[/mm] .
>  >  >  >  >  
> > > > > Klappt das so?
>  >  >  >  >  
> > > > >
> > > > > Lg und Dank
>  >  >  >  >  
> > > > >
> > > > > Thomas
> > > >  

> > >  

> >  

>
>  


Bezug
                                                
Bezug
Beweis ad Topologischer Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:45 Mo 17.06.2013
Autor: Thomas_Aut

Danke danke

Lg

Thomas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]