Beweis Vereinigung Menge < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Aufgabe | A, B, A', B' seien Mengen.
Untersuchen Sie, welcher der Formel:
1. (A X B) [mm] \cap [/mm] (A' X B')= (A [mm] \cap [/mm] A') X (B [mm] \cap [/mm] B')
2. (A X B) [mm] \cup [/mm] (A' X B')= (A [mm] \cup [/mm] A') X (B [mm] \cup [/mm] B')
allgemein richtig sind. |
Hallo.
Da mein anderer Post in Mengenunterforum seine Ablaufzeit überstrichen hat und es sich um einen Beweis handelt, stelle ich meine Frage in diesem Unterforum mit der Bitte um eine Kontrolle des folgenden Beweises.
2. Dazu hab ich ein Gegenbeispiel, sodass ich widerlegen kann.
1. [mm] \{A, A', B, B'\} \subset [/mm] X
M:= (A X B) [mm] \cap [/mm] (A' X B') [mm] \gdw \{(a,b) \in X^{2}: a \in A, b \in B\} \cap \{(a,b) \in X^{2}: a \in A', b \in B'\} \gdw \{(a,b) \in X^{2}: (a \in A , b \in B) \wedge (a \in A' , b \in B')\} \rightarrow \neg \exists [/mm] (a,b) [mm] \in [/mm] M: (a [mm] \notin [/mm] A [mm] \vee [/mm] a [mm] \notin [/mm] A'), (b [mm] \notin [/mm] B [mm] \vee \notin [/mm] B') [mm] \gdw \forall [/mm] (a,b) [mm] \in [/mm] M: a [mm] \in (A\cap [/mm] A'), b [mm] \in [/mm] (B [mm] \cap [/mm] B') [mm] \Rightarrow M:=\{(a,b)\in X^{2}:a\in(A\cap A'), b\in (B \cap B')\} \gdw [/mm] (A [mm] \cap [/mm] A') X ( B [mm] \cap [/mm] B)
Ich bin mir bei dem Beweis ziemlich unsicher.
Es wäre wohl sinnvoller zu zeigen, dass
(AXB) [mm] \cap [/mm] (A' X B') [mm] \subset [/mm] (A [mm] \cap [/mm] A') X (B [mm] \cap [/mm] B') und
(A [mm] \cap [/mm] A') X (B [mm] \cap [/mm] B') [mm] \subset [/mm] (AXA') [mm] \cap [/mm] (B X B')
Über eine Kontrolle hinsichtlich der Schreibweise würde mich trotzdem erfreuen.
Grüße
|
|
|
|
Hallo,
> A, B, A', B' seien Mengen.
> Untersuchen Sie, welcher der Formel:
> 1. (A X B) [mm]\cap[/mm] (A' X B')= (A [mm]\cap[/mm] A') X (B [mm]\cap[/mm] B')
> 2. (A X B) [mm]\cup[/mm] (A' X B')= (A [mm]\cup[/mm] A') X (B [mm]\cup[/mm] B')
>
> allgemein richtig sind.
> Hallo.
>
> Da mein anderer Post in Mengenunterforum seine Ablaufzeit
> überstrichen hat und es sich um einen Beweis handelt,
> stelle ich meine Frage in diesem Unterforum mit der Bitte
> um eine Kontrolle des folgenden Beweises.
>
> 2. Dazu hab ich ein Gegenbeispiel, sodass ich widerlegen
> kann.
>
> 1. [mm]\{A, A', B, B'\} \subset[/mm] X
Was soll das denn bedeuten?
Ich dachte, die Mengen [mm]A,A',B,B'[/mm] seien Teilmenge einer Grundmenge [mm]X[/mm]
Was hat [mm]\{A,A',...\}[/mm] mit [mm]X[/mm] zu tun? Wie stehen die denn in Teilmengenrelation?
> M:= (A X B) [mm]\cap[/mm] (A' X B') [mm]\gdw \{(a,b) \in X^{2}: a \in A, b \in B\} \cap \{(a,b) \in X^{2}: a \in A', b \in B'\} \gdw \{(a,b) \in X^{2}: (a \in A , b \in B) \wedge (a \in A' , b \in B')\} \rightarrow \neg \exists[/mm]
> (a,b) [mm]\in[/mm] M: (a [mm]\notin[/mm] A [mm]\vee[/mm] a [mm]\notin[/mm] A'), (b [mm]\notin[/mm] B
> [mm]\vee \notin[/mm] B') [mm]\gdw \forall[/mm] (a,b) [mm]\in[/mm] M: a [mm]\in (A\cap[/mm] A'),
> b [mm]\in[/mm] (B [mm]\cap[/mm] B') [mm]\Rightarrow M:=\{(a,b)\in X^{2}:a\in(A\cap A'), b\in (B \cap B')\} \gdw[/mm]
> (A [mm]\cap[/mm] A') X ( B [mm]\cap[/mm] B)
Total konfus!
Was soll denn die Äquivalenz zweier Mengen sein?
>
> Ich bin mir bei dem Beweis ziemlich unsicher.
> Es wäre wohl sinnvoller zu zeigen, dass
> (AXB) [mm]\cap[/mm] (A' X B') [mm]\subset[/mm] (A [mm]\cap[/mm] A') X (B [mm]\cap[/mm] B') und
> (A [mm]\cap[/mm] A') X (B [mm]\cap[/mm] B') [mm]\subset[/mm] (AXA') [mm]\cap[/mm] (B X B')
Ja, das wäre es wahrhaftig.
Mache das mal.
Für die erste Richtung ein Anfang:
Sei [mm](x,y)\in(A\times B)\cap(A'\times B')[/mm]
[mm]\Rightarrow (x,y)\in(A\times B) \ \wedge \ (x,y)\in(A'\times B')[/mm] nach Def. Schnittmenge.
Nun drösel das weiter auf mit der Def. von "[mm]\times[/mm]" ...
Bis du bei [mm](x,y)\in(A\cap A')\times (B\cap B')[/mm] landest.
Dann die andere Richtung.
Ich empfehle gerade zu Beginn die Mengengleichheitsbeweise auf diese Weise aufzudröseln und beide Teilmengenbez. zu zeigen.
Zum einen wegen der Übersicht(lichkeit), zum anderen, damit du dich an die Beweisführungen gewöhnst.
Dein erster "Ansatz" ist .... naja
>
> Über eine Kontrolle hinsichtlich der Schreibweise würde
> mich trotzdem erfreuen.
Die Schreibweise treibt mir Tränen in die Augen ... ganz ehrlich ...
>
> Grüße
LG
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:52 So 06.01.2013 | Autor: | Masseltof |
Hallo Schachuzipus.
Das mit der Schreibweise habe ich im anderen Thread schon gemerkt.
Ich werde mir Mühe geben meine Defizite auszugleichen.
1. Frage: Ich dachte mir, dass ich statt A [mm] \subset [/mm] X, A' [mm] \subset [/mm] X, B [mm] \subset [/mm] X , B' [mm] \subset [/mm] X zu schreiben, dies als Menge zusammenfassen kann.
[mm] \{A,A',B,B'\}\subset [/mm] X wäre demnach eine Teilmenge, die alle Elemente aus A, A', B, B' enthält.... Ok ich merke gerade wo mein Fehler liegt....
2.Frage
Ich dachte, dass Mengenäquivalenz Gleichheit bedeutet.
Da dies scheinbar nicht der Fall ist, nehme ich an, dass logische Verknüpfungen in Kombination mit Mengen nichts zu suchen haben?
An den Beweis setze ich mich jetzt noch einmal.
Grüße
|
|
|
|
|
Hallo.
Hier mein überarbeiteter Beweis:
1.(a,b) [mm] \in [/mm] (A X B) [mm] \wedge [/mm] (a,b) [mm] \in [/mm] (A' X B') [mm] \gdw [/mm] (a,b) [mm] \in \{(a,b) \in X^{2}: a \in A, b \in B\} \wedge [/mm] (a,b) [mm] \in \{(a,b) \in X^{2}: a \in A', b \in B' \} \Rightarrow [/mm] (a,b) [mm] \in \{(a,b) \in X^{2}: (a \in A, b \in B) \wedge (a \in A', b\in B')\} \Rightarrow [/mm] (a,b) [mm] \in \{(a,b) \in X^{2}: a \in A \wedge a \in A', b \in B \wedge b \in B' \} \Rightarrow [/mm] (a,b) [mm] \in \{(a,b) \in X^{2}: a \in (A\cap A'), b \in (B \cap B') \} \gdw [/mm] (a,b) [mm] \in [/mm] ((A [mm] \cap [/mm] A') X ( B [mm] \cap [/mm] B')) [mm] \Rightarrow [/mm] (A X B) [mm] \cap [/mm] (A' X B') [mm] \subset [/mm] (A [mm] \cap [/mm] A') X (B [mm] \cap [/mm] B')
2. (a,b) [mm] \in [/mm] ((A [mm] \cap [/mm] A') X (B [mm] \cap [/mm] B')) [mm] \gdw [/mm] (a,b) [mm] \in \{(a,b) \in X^{2}: a \in (A \cap A'), b \in (B \cap B')\} \gdw [/mm] (a,b) [mm] \in \{(a,b) \in X^{2}: a \in A \wedge a \in A', b \in B \wedge b \in B' \} \Rightarrow [/mm] (a,b) [mm] \in \{(a,b) \in X^{2}: (a \in A, b \in B) \wedge (a \in A', b \in B')\} \Rightarrow [/mm] (a,b) [mm] \in \{(a,b) \in X^{2}: a \in A, b \in B\} \wedge [/mm] (a,b) [mm] \in \{(a,b) \in X^{2}: a \in A', b \in B'\} \gdw [/mm] (a,b) [mm] \in [/mm] (A X B) [mm] \wedge [/mm] (a,b) [mm] \in [/mm] (A' X B') [mm] \Rightarrow [/mm] (A [mm] \cap [/mm] A') X (B [mm] \cap [/mm] B') [mm] \subset [/mm] (A X B) [mm] \cap [/mm] (A' X B')
Ist das so i.O?
Mit den Äquivalenzpfeilen bin ich mir unsicher.
Ich bin gerade am überlegen, ob ich für jede Aussage wirklich überprüfen muss, ob eine Äquivalenz besteht.
Der Beweis zur nächsten Aussage hin ( [mm] \Rightarrow) [/mm] sollte eigentlich genügen, da diese Aussage p.D dann wahr ist und daraus wiederum eine weitere Aussage getroffen werden kann.
Über eine Kontrolle würde ich mich freuen.
Grüße
|
|
|
|
|
Hallo Masseltof,
> Hallo.
>
> Hier mein überarbeiteter Beweis:
>
> 1.(a,b) [mm]\in[/mm] (A X B) [mm]\wedge[/mm] (a,b) [mm]\in[/mm] (A' X B') [mm]\gdw[/mm] (a,b)
> [mm]\in \{(a,b) \in X^{2}: a \in A, b \in B\} \wedge[/mm] (a,b) [mm]\in \{(a,b) \in X^{2}: a \in A', b \in B' \} \Rightarrow[/mm]
> (a,b) [mm]\in \{(a,b) \in X^{2}: (a \in A, b \in B) \wedge (a \in A', b\in B')\} \Rightarrow[/mm]
> (a,b) [mm]\in \{(a,b) \in X^{2}: a \in A \wedge a \in A', b \in B \wedge b \in B' \} \Rightarrow[/mm]
> (a,b) [mm]\in \{(a,b) \in X^{2}: a \in (A\cap A'), b \in (B \cap B') \} \gdw[/mm]
> (a,b) [mm]\in[/mm] ((A [mm]\cap[/mm] A') X ( B [mm]\cap[/mm] B')) [mm]\Rightarrow[/mm] (A X B)
> [mm]\cap[/mm] (A' X B') [mm]\subset[/mm] (A [mm]\cap[/mm] A') X (B [mm]\cap[/mm] B')
>
>
> 2. (a,b) [mm]\in[/mm] ((A [mm]\cap[/mm] A') X (B [mm]\cap[/mm] B')) [mm]\gdw[/mm] (a,b) [mm]\in \{(a,b) \in X^{2}: a \in (A \cap A'), b \in (B \cap B')\} \gdw[/mm]
> (a,b) [mm]\in \{(a,b) \in X^{2}: a \in A \wedge a \in A', b \in B \wedge b \in B' \} \Rightarrow[/mm]
> (a,b) [mm]\in \{(a,b) \in X^{2}: (a \in A, b \in B) \wedge (a \in A', b \in B')\} \Rightarrow[/mm]
> (a,b) [mm]\in \{(a,b) \in X^{2}: a \in A, b \in B\} \wedge[/mm]
> (a,b) [mm]\in \{(a,b) \in X^{2}: a \in A', b \in B'\} \gdw[/mm]
> (a,b) [mm]\in[/mm] (A X B) [mm]\wedge[/mm] (a,b) [mm]\in[/mm] (A' X B') [mm]\Rightarrow[/mm] (A
> [mm]\cap[/mm] A') X (B [mm]\cap[/mm] B') [mm]\subset[/mm] (A X B) [mm]\cap[/mm] (A' X B')
>
> Ist das so i.O?
Das ist schon wesentlich besser, wenn auch etwas "umständlich" mit den Mengenschreibweisen ...
Aber alles richtig!
>
> Mit den Äquivalenzpfeilen bin ich mir unsicher.
> Ich bin gerade am überlegen, ob ich für jede Aussage
> wirklich überprüfen muss, ob eine Äquivalenz besteht.
Das müsstest du in der Tat. Du hast es richtig gemacht, brauchst aber jeweils nur [mm]\Rightarrow[/mm], wie du ja auch gleich richtig bemerkst.
> Der Beweis zur nächsten Aussage hin ( [mm]\Rightarrow)[/mm] sollte
> eigentlich genügen, da diese Aussage p.D dann wahr ist und
> daraus wiederum eine weitere Aussage getroffen werden
> kann.
Genau!
>
> Über eine Kontrolle würde ich mich freuen.
> Grüße
>
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:17 Di 08.01.2013 | Autor: | Masseltof |
Hallo.
Danke für die Kontrolle. Darüber habe ich mich sehr gefreut.
Grüße :)
|
|
|
|