matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeBeweis Vektorraum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Beweis Vektorraum
Beweis Vektorraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Vektorraum: Aufgaben
Status: (Frage) beantwortet Status 
Datum: 16:51 So 09.11.2008
Autor: Studentin87

Aufgabe 1
Sei V ein K-Vektorraum und X eine nicht-leere Menge. Für f,g [mm] \in [/mm] Abb(X,V) definieren wir f+g [mm] \in [/mm] Abb(X,V) durch (f+g)(x):=f(x)+g(x), x [mm] \in [/mm] X. Für f [mm] \in [/mm] Abb(X,V) und [mm] \lambda \in [/mm] K definieren wir [mm] \lambda*f \in [/mm] Abb(X,V) durch [mm] (\lambda*f)(x) [/mm] := [mm] \lambda*f(x), [/mm] x [mm] \in [/mm] X.
Beweisen Sie,dass Abb(X,V) ein K-Vektorraum ist.

Aufgabe 2
Sei W ein Unterraum von V.
Zeigen Sie, dass dann Abb(X,W) ein Unterraum von Abb(X,V) ist.

Ich kenne die Definitionen zu Vektorraum und Unterraum,aber wie überprüfe ich nun die Eigenschaften an dieser Aufgabe. Kann mir jemand ein Beispiel geben?

        
Bezug
Beweis Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 10:42 Mo 10.11.2008
Autor: angela.h.b.


> Sei V ein K-Vektorraum und X eine nicht-leere Menge. Für
> f,g [mm]\in[/mm] Abb(X,V) definieren wir f+g [mm]\in[/mm] Abb(X,V) durch
> (f+g)(x):=f(x)+g(x), x [mm]\in[/mm] X. Für f [mm]\in[/mm] Abb(X,V) und
> [mm]\lambda \in[/mm] K definieren wir [mm]\lambda*f \in[/mm] Abb(X,V) durch
> [mm](\lambda*f)(x)[/mm] := [mm]\lambda*f(x),[/mm] x [mm]\in[/mm] X.
>  Beweisen Sie,dass Abb(X,V) ein K-Vektorraum ist.


Hallo,

Du mußt nun die Gültigkeit der VR-Axione von A-Z vorrechen.

Zum Beispiel das Assoziativgesetzt:

Zu zeigen: für alle  f,g,h [mm] \in [/mm] Abb(X, V).gilt (f+g)+h=f+(g+h).

An dieser Stelle muß man kurz in sih gehen. Es ist hier die Gleicheit von Funktionen zu zeigen.

Wann sind zwei Funktionen gleich: wenn ihre Funktionswerte an jeder Stelle übereinstimmen.

Damit steht der Fahrplan: man wird zeigen müssen, daß für jedes [mm] x\in [/mm] X folgendes gilt

[(f+g)+h](x)=[f+(g+h)](x).

Beweis: Seine f,g,h [mm] \in [/mm] Abb(X,V).

Für alle [mm] x\in [/mm] X gilt

[(f+g)+h](x)= (f+g)(x)+h(x)   nach Def. der Addition von Funktionen

=(f(x)+g(x))+h(x)     nach Def. der Addition von Funktionen

= f(x)+ (g(x)+h(x))     denn f(x), g(x), h(x) sind in V und hier gilt das Assoziativgesetz, weil V nach Voraussetzung ein VR ist

= ...

Jetzt kannst Du weitermachen.


Möglicherweise hat sich hiermit deine Frage, was zu tun ist, bereits geklärt.

Gruß v. Angela

>  Sei W ein Unterraum von V.
> Zeigen Sie, dass dann Abb(X,W) ein Unterraum von Abb(X,V)
> ist.
>  Ich kenne die Definitionen zu Vektorraum und
> Unterraum,aber wie überprüfe ich nun die Eigenschaften an
> dieser Aufgabe. Kann mir jemand ein Beispiel geben?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]