matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBeweis Ungleichung\Cauchy
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - Beweis Ungleichung\Cauchy
Beweis Ungleichung\Cauchy < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Ungleichung\Cauchy: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:50 Di 20.11.2012
Autor: Paddi15

Aufgabe
<IMG style="WIDTH: 32px; HEIGHT: 11px" class=latex [mm] alt="$\alpha>0$" [/mm] src="http://teximg.matheraum.de/render?d=108&s=$%5Calpha%3E0$" width=171 height=11 _cke_realelement="true"> und [mm] (a_n) [/mm] rekursive Folge

a1= 3/4<SPAN class=math>[mm]\alpha[/mm]
a_(n+1)= [mm] 2(a_n)-[/mm] [mm]\alpha[/mm][mm] (a_n)^2 [/mm]

Zeige, dass Cauchy-Krit. erfüllt ist.


Hinweis: Zeige: [mm]|a_n_+_k_+_1-a_n_+_1|\leq\bruch{1}{2}|a_n_+_k-a_n|[/mm] für n,k>=1
</SPAN>



Ich habe erstmal mit dem Hinweis angefangen und n,k=1 gesetzt.
Komme dann auf [mm]|a_3-a_2|\leq\bruch{1}{2}|a_2-a_1|[/mm].
Dann gilt nach meiner Rechung, dass dies für 0<[mm]\alpha[/mm]>1 gilt, oder soll ich das allgemein zeigen für alle Folgen zeigen?

Gruß

        
Bezug
Beweis Ungleichung\Cauchy: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:52 Di 20.11.2012
Autor: Paddi15

Iwie haben sich da Fehler eingeschlichen, also das was man nicht lesen kann ist:

[mm]\alpha>0[/mm]

a1=[mm]\bruch{3}{4\alpha}[/mm]


Bezug
        
Bezug
Beweis Ungleichung\Cauchy: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:14 Di 20.11.2012
Autor: Paddi15

Okay das mit dem 0<alpha>1 nehm ich zurück.

Dann nur eine Frage, muss ich die Ungleichung für die Aufgabe oder für alle Folgen beweisen?

Bezug
                
Bezug
Beweis Ungleichung\Cauchy: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:28 Di 20.11.2012
Autor: Paddi15

Okay Problem gelöst, jetzt bräuchte ich mal wirklich Tipps um zu zeigen ob es eine Cauchy-Folge ist.

Bezug
                        
Bezug
Beweis Ungleichung\Cauchy: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:52 Di 20.11.2012
Autor: Helbig

Hallo Paddi,

wenn Du Deine Frage so aufschreibst, daß ich das lesen kann, kann ich Dir vielleicht auch helfen. Beachte: Ich bin ein Mensch und kein HTML-Browser!

Gruß,
Wolfgang



Bezug
                        
Bezug
Beweis Ungleichung\Cauchy: Beweis des Hinweises
Status: (Frage) überfällig Status 
Datum: 15:52 Do 22.11.2012
Autor: AlbertHerum

Aufgabe
[mm] a_{n+1}=2*a_{n}-\alpha *a_{n}² [/mm]
Hinweis zeigen Sie:
[mm] |a_{n+k+1}-a_{n+1}| [/mm]  <  1/2 * [mm] |a_{n+k}-a_{n}| [/mm]

Wenn man das k einsetz kommt doch folgendes raus...

[mm] |2a_{n+k}-\alpha*a²_{n+k}-2a_{n}+\alpha*a²_{n}| [/mm]

[mm] =|2(a_{n+k}-a_{n})+\alpha(a²_{n}-a²_{n+k}| [/mm]

[mm] <=2|a_{n+k}-a_{n}|+\alpha|a²_{n}-a²_{n+k}| [/mm]

[mm] =2|a_{n+k}-a_{n}|+\alpha|a²_{n+k}-a²_{n}| [/mm]

[mm] =2|a_{n+k}-a_{n}|+\alpha|(a_{n+k}-a_{n})(a_{n+k}+a_{n})| [/mm]

[mm] =|a_{n+k}-a_{n}| (2+\alpha|a_{n+k}+a_{n}|) [/mm]
und da [mm] \alpha [/mm] >0 ist und |irgendetwas|>=0 ist kann man den Hinweis doch nicht beweisen.

mfg

Albert




Bezug
                                
Bezug
Beweis Ungleichung\Cauchy: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:58 Sa 24.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Beweis Ungleichung\Cauchy: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Do 22.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]