matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesBeweis Supremum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Beweis Supremum
Beweis Supremum < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Supremum: Verständnisprobleme
Status: (Frage) beantwortet Status 
Datum: 19:20 Mo 18.10.2010
Autor: maka_XY

Aufgabe
Für [mm] M\subset\IR [/mm] versteht man unter rM, r [mm] \in \IR, [/mm] die Menge {rx [mm] \in \IR [/mm] | x [mm] \in [/mm] M}; weiter sei -M die Menge (-1)M.

Man beweise oder widerlege:

Es seien [mm]a_{ij}[/mm]  für i = 1,...,m, j = 1,...,n reelle Zahlen. Dann gilt:

[mm] sup_{ 1 \le i \le m } sup_{ 1 \le j \le n } (a_{ij}) [/mm] =  [mm] sup_{ 1 \le j \le n } sup_{ 1 \le i \le m } (a_{ij}) [/mm]

Hallo! Bin neu hier im Forum, ist echt ne super Sache!
Hoffe, die Aufgabe ist formelmäßig lesbar, muss mich erst einmal daran gewöhnen. Nun zu meiner Frage:

Komme mit der Schreibweise sup  sup [mm] (a_{ij}) [/mm] nicht zurecht, bzw. verwirren mich diese zwei sup in Bezug auf das [mm] a_{ij}?! [/mm] Ist das dann sozusagen das Supremum vom Supremum oder wie muss ich mir das vorstellen? Wäre super, wenn mir das jemand irgendwie anschaulich erklären könnte.

Zum eigentlichen Beweis der Aufgabe habe ich mir gedacht, man müsste doch nur für eine Menge A:={ [mm] a_{ij} [/mm] | 1 [mm] \le [/mm] i [mm] \le [/mm] m, 1 [mm] \le [/mm] j [mm] \le [/mm] n } zeigen, dass sowohl die linke als auch die rechte Seite der Gleichung sup A ist und aufgrund der Eindeutigkeit eines Supremums sind die Seiten gleich.

Gruß maka_XY


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Mo 18.10.2010
Autor: XPatrickX

Hallo,

unter der Menge [mm] (a_{ij})_{i=1,...,m ; j=1,...,n} [/mm] kannst du dir eine [mm] $m\times [/mm] n$-Matrix vorstellen.
Bei $ [mm] sup_{ 1 \le i \le m } sup_{ 1 \le j \le n } (a_{ij}) [/mm] $ suchst du nun also zuerst den maximalen Eintrag in den Spalten und dann den maximalen Eintrag in dieser Spalten zeilenmäßig betrachtet.

Bei der rechten Seite der Gleichung ist es genau umgekehrt.

Gruß Patrick

Bezug
                
Bezug
Beweis Supremum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:09 Mo 18.10.2010
Autor: maka_XY

Hey danke für die schnelle Antwort so hatte ich mir das vorgestellt und habe es jetzt auch verstanden...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]