matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraBeweis Summenformel
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Beweis Summenformel
Beweis Summenformel < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Summenformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:27 So 29.10.2006
Autor: feku

Aufgabe
Beweisen Sie folgende Summenformel direkt:
[mm] \summe_{i=0}^{n}x^{i} [/mm] = [mm] \begin{cases} n+1, & \mbox{für } x \mbox{ =1} \\ \bruch{1-x^{n+1}}{1-x}, & \mbox{für } x \mbox{ ungleich 1} \end{cases} [/mm]

Wie kann man eine solche Formel direkt, d.h. ohne vollständige Induktion beweisen? Ich hab schon alles mögliche versucht, jedoch ohne Erfolg. Gibt es so etwas wie eine grundsätzliche Vorgehensweise um Summenformeln zu beweisen? Denn ich habe noch mehrere Aufgaben dieser Art und komme einfach nicht weiter!

        
Bezug
Beweis Summenformel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:28 So 29.10.2006
Autor: feku

Außerdem gilt noch n [mm] \in \IN [/mm] !

Bezug
        
Bezug
Beweis Summenformel: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 So 29.10.2006
Autor: Fabian

Hallo feku

und [willkommenmr]

Der Beweis ist ganz einfach!

  [mm] s=1+q+........+q^{n} [/mm]  
q*s=  [mm] q+........+q^{n}+q^{n+1} [/mm]   ( hier habe ich einfach beide Seiten mit q multipliziert )

Jetzt mußt du nur noch die zweite Zeile von der ersten Zeile subtrahieren und siehe da, du wirst die Summenformel für die Geometrische Reihe erhalten!  

Bezug
                
Bezug
Beweis Summenformel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 So 29.10.2006
Autor: feku

Vielen Dank!!! Ist ja wirklich einfach und logisch, aber irgendwie hatte ich da einen "Hänger" und bin nicht drauf gekommen. Nochmals Danke für die schnelle Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]