matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLängen, Abstände, WinkelBeweis Sechseck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Längen, Abstände, Winkel" - Beweis Sechseck
Beweis Sechseck < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Sechseck: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Mi 06.10.2021
Autor: Expert111

Aufgabe
3 Kreise mit gleichem Radius sind nicht auf einer Gerade. Sie überschneiden sich auch nicht (=keine gemeinsamen Punkte) und von ihren Mittelpunkten A,B,C (s. Dateianhang) werden 6 Tangenten an den jeweils anderen Kreisen gelegt, sodass ein Sechseck entsteht, welches konvex ist.
Zeige, dass die Summen der Längen von je drei paarweise nicht direkt benachbarten Seiten ist gleich.

Meine Ansätze:
Meine erste Überlegung war, dass die kleineren Dreiecke um das Seckseck herum kongruent sein können. Als ich aber versucht habe, dies zu zeigen, und dann mit Geogebra nach Gegenbeispielen gesucht habe, konnte ich diese Behauptung leider widerlegen.

Mein neuer Ansatz ist, dass das rote und das orangene Dreieck kongruent sind (s. Anhang) und dann die Summen der Flächen der Dreiecke auf je drej paarweise nicht direkt benachbarten Seiten gleich ist. Erstens weiß ich aber nicht, wie ich die Kongruenz zeigen muss, und zweitens frage ich mich, ob der Ansatz überhaupt geeignet ist - denn, wenn diese Flächensummen gleich sind, wie leitet sich daraus ab, dass die Summen der entsprechenden Seiten des Sechseck auch gleich sind?

Vielen Dank im Voraus, ich komme gar nicht weiter!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Beweis Sechseck: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Do 07.10.2021
Autor: HJKweseleit

Ich habe leider im Moment keine Zeit, mich ausführlich um dein Problem zu kümmern. Nur so viel in Kürze:

Zwischen Flächeninhalt und Umfang besteht kein Zusammenhang. Betrachte ein Rechtwinkliges Dreieck mit Grundseite 3, Seiten  4 und 5 (Flächeninhalt = 6) und eins mit Grundseite 5.5, Seiten 1 und 5.5 (hat nicht mal die Höhe 1, Flächeninhalt kleiner als 2.75). Gleicher Umfang 12, verschiedene Flächeninhalte.

Evtl. hilft: Betrachte mal z.B. die beiden Tangente an Kreis B. Die Strecken vom jeweiligen Berührpunkt an Kreis B bis zu ihrem gemeinsamen Schnittpunkt sind aus Symmentriegründen gleich lang. Entsprechendes bei den beiden anderen Kreisen. Zusammen mit den gleichgroßen Radien könnte das zum Ziel führen.

Bezug
        
Bezug
Beweis Sechseck: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Do 07.10.2021
Autor: statler

Welcome to the club!

Du solltest in deinem Bild die Berührpunkte so benennen, daß [mm] $\overline{AB_{2}}$, $\overline{BC_{2}}$ [/mm] und [mm] $\overline{CA_{2}}$ [/mm] die eine Sorte Tangenten sind und [mm] $\overline{AC_{1}}$, $\overline{CB_{1}}$ [/mm] und [mm] $\overline{BA_{1}}$ [/mm] die andere. Dann ist z. B. [mm] $\overline{AB_{2}} [/mm] =  [mm] \overline{BA_{1}}$ [/mm] usw., also sind die Summen über die Längen gleich.

Jetzt ist auch noch [mm] $\overline{PA_{1}} [/mm] = [mm] \overline{PA_{2}}$ [/mm] und entsprechend für $R$ mit dem Kreis um $B$ und für $T$ mit dem Kreis um $C.$ Weiter gilt [mm] $\overline{AQ} [/mm] = [mm] \overline{QB}$ [/mm] und [mm] $\overline{A_{1}Q} [/mm] = [mm] \overline{QB_{2}}$ [/mm] und entsprechend für $S$ und $U.$
Die gesuchte Gleichung ist [mm] $\overline{QR} [/mm] + [mm] \overline{ST} [/mm] + [mm] \overline{UP} [/mm] = [mm] \overline{PQ} [/mm] + [mm] \overline{RS} [/mm] + [mm] \overline{TU}$, [/mm] an die man sich jetzt (hoffentlich) heranpirschen kann.

Mein aktueller Rechner hat leider kein GeoGebra, um das visuell zu unterstützen.

Gruß aus HH
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]