matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBeweis: Potenzen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Beweis: Potenzen
Beweis: Potenzen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis: Potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:08 Fr 25.11.2005
Autor: Kati

Ich habe diese Frage noch in keinem anderen Internetforum gestellt.

Hi!
Ich hab hier ein Problem mit einer Aufgabe...

Ich soll beweisen, dass für alle a [mm] \in \IR [/mm] \ {0} und alle j [mm] \in \IN [/mm] gilt:
( [mm] a^{-1} )^{1/j} [/mm] = ( [mm] a^{1/j} )^{-1} [/mm]

Ich dachte ich versuchs mit ner vollständigen Induktion:
z. z. ( [mm] a^{-1} )^{1/j} [/mm] =  [mm] a^{1/j * -1} [/mm]

Induktionsanfang: sei j = 1, dann [mm] a^{-1} [/mm] = [mm] a^{-1} [/mm]
Induktionsschritt: j -> j+1
                            so... hier komm ich allerdings schon
                            nicht mehr weiter, ich weiß net was ich mit:
                            ( [mm] a^{-1} )^{1/(j+1)} [/mm] anfangen soll...

Wäre nett wenn mir hier jemand weiter helfen könnte oder falls dieser Beweisweg der falsche ist einen anderen zeigen könnte...

Gruß kati

        
Bezug
Beweis: Potenzen: ohne vollständige Induktion
Status: (Antwort) fertig Status 
Datum: 13:29 Fr 25.11.2005
Autor: Roadrunner

Hallo Kati!


Hier würde ich ganz ohne vollständige Induktion vorgehen ... sondern nur mit den Definitionen der Potenzen bzw. den MBPotenzgesetzen:

[mm] $\left(a^{-1}\right)^{\bruch{1}{j}} [/mm] \ = \ [mm] \wurzel[j]{a^{-1} \ } [/mm] \ = \ [mm] \wurzel[j]{\bruch{1}{a} \ } [/mm] \ = \ ...$


Kommst Du nun alleine weiter?


Gruß vom
Roadrunner


Bezug
                
Bezug
Beweis: Potenzen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:34 Fr 25.11.2005
Autor: Kati

Ja.... aber ich bin mir net so sicher ob wir die schon hatten, dh. ob ich die hier anwenden darf... geht das net auch irgendwie anders?

LG

Bezug
                        
Bezug
Beweis: Potenzen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Fr 25.11.2005
Autor: saxneat

Tach Kati!

Solltet ihr die Exponentialfunktion und den natürlichen Logarithmus schon eingeführt haben geht das natürlich auch so:

[mm] a^{x}=e^{x*ln(a)} [/mm]

desweiteren gilt:

[mm] ln(a^{x})=x*ln(a) [/mm]

also:

[mm] (a^{-1})^{\bruch{1}{j}}=e^{\bruch{1}{j}*ln(a^{-1})}=e^{-1*\bruch{1}{j}*ln(a)}=e^{-1*ln(a^{\bruch{1}{j}})}=(a^{\bruch{1}{j}})^{-1} [/mm]

MfG
saxneat

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]