matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBeweis Polynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Beweis Polynom
Beweis Polynom < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:28 Mi 26.01.2005
Autor: Phlipper

Man beweise, daß ein normiertes Polynom f [mm] \in [/mm] Z[x], welches keine ganzzahlige
Nullstelle besitzt, auch keine rationale Nullstelle besitzt.

also habe erstmal aufgeschrieben,wie man ein Poynom konstruieren kann
[mm] \summe_{i=0}^{n} a_{k} x^{k} \in \IZ[x]. [/mm] So eine rationale Zahl habe wie folgt dargestellt p/q [mm] \in \IQ [/mm] mit p und q [mm] \in \IZ [/mm] und ggt(p,q) = 1.
f(p/q) = 0 und p/ [mm] a_{0} [/mm] und q/ [mm] a_{n} [/mm] sagt ein Satz.
enn das Poylnom normiert ist, dann ist [mm] a_{n} [/mm] = 1 und q teilt dieses, also ist q=1 und daraus folgt dann f(p) = 0

Aber das muss ich noch beweisen, und da hängt es wieder mal, wäre nett,wenn jemand seinen Senf dazu gibt...danke


        
Bezug
Beweis Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 Fr 28.01.2005
Autor: moudi


> Man beweise, daß ein normiertes Polynom f [mm]\in[/mm] Z[x], welches
> keine ganzzahlige
>  Nullstelle besitzt, auch keine rationale Nullstelle
> besitzt.
>  
> also habe erstmal aufgeschrieben,wie man ein Poynom
> konstruieren kann
>   [mm]\summe_{i=0}^{n} a_{k} x^{k} \in \IZ[x].[/mm] So eine
> rationale Zahl habe wie folgt dargestellt p/q [mm]\in \IQ[/mm] mit p
> und q [mm]\in \IZ[/mm] und ggt(p,q) = 1.
>  f(p/q) = 0 und p/ [mm]a_{0}[/mm] und q/ [mm]a_{n}[/mm] sagt ein Satz.
>  enn das Poylnom normiert ist, dann ist [mm]a_{n}[/mm] = 1 und q
> teilt dieses, also ist q=1 und daraus folgt dann f(p) = 0
>  
> Aber das muss ich noch beweisen, und da hängt es wieder
> mal, wäre nett,wenn jemand seinen Senf dazu gibt...danke
>  

Hallo Phlipper

So weit ich sehe, hast du die Aufgabe gelöst.
Oder was musst du noch genau beweisen?

mfG Moudi

>  

Bezug
                
Bezug
Beweis Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:32 Fr 28.01.2005
Autor: Phlipper

p/ [mm] a_{0} [/mm]  und q/ [mm] a_{n} [/mm] muss ich zeigen, denn den Satz hatten wir nicht in der Vorlesung. Ist eigentlich logisch,aber habe gerade keine Idee und da ich den anderen Beweis, ja eigentlich so schön gemacht habe, wäre es schade,wenn ich ihn verändenr müsste, nur weil ich das hier nicht zeigen kann.
Danke Moud für deine nette Hilfe !


Bezug
                        
Bezug
Beweis Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 16:56 Sa 29.01.2005
Autor: moudi

Hallo Phlipper

Das geht relativ einfach. Setze einfach [mm] $\frac [/mm] pq$ in das Polynom ein und nütze aus, dass dies eine Nullstelle ist, du erhälst dann eine Gleichung.
Dann multiplizierst du die Gleichung mit [mm] $q^n$, [/mm] damit nur noch ganze Zahlen vorkommst.
Aus der entstehenden Gleichung kannst du relativ einfach schliessen, dass [mm] $p|a_0$ [/mm] und [mm] $q|a_n$. [/mm]
Nimm einfach den Summanden, der [mm] $a_0$ [/mm] (rsp. [mm] $a_n$) [/mm] enthält auf die andere Seite der Gleichung und klammere p (rsp. q) auf der anderen Seite aus.

mfG Moudi





Bezug
                                
Bezug
Beweis Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:05 So 30.01.2005
Autor: Phlipper

[mm] a_{0} q^{n} [/mm] + [mm] a_{1} q^{n-1}p [/mm] + ... + [mm] a_{n} p^{n}= [/mm] 0 ergibt sich ja dann.
- [mm] a_{0} q^{n} [/mm] = p [mm] (a_{1} q^{n-1} [/mm] + ... + [mm] a_{n} p^{n-1} [/mm]

Ich zeige ja, dass p [mm] a_{0} [/mm] teilt indem es ein x gibt, so dass [mm] a_{0} [/mm] = p*x ist. x ist ja in dem Fall [mm] (a_{1} q^{n-1} [/mm] + ... + [mm] a_{n} p^{n-1}. [/mm] Aber das stört doch jetzt noch das [mm] q^{n} [/mm] oder nicht ? Aber da kann ich ja schreiben [mm] a_{0} [/mm] = p*x/q oder ??

Nochmal danke für deine Hilfe

Bezug
                                        
Bezug
Beweis Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 12:46 Mo 31.01.2005
Autor: moudi


>  [mm]a_{0} q^{n}[/mm] + [mm]a_{1} q^{n-1}p[/mm] + ... + [mm]a_{n} p^{n}=[/mm] 0 ergibt
> sich ja dann.
>  - [mm]a_{0} q^{n}[/mm] = p [mm](a_{1} q^{n-1}[/mm] + ... + [mm]a_{n} p^{n-1} [/mm]
>  
>
> Ich zeige ja, dass p [mm]a_{0}[/mm] teilt indem es ein x gibt, so
> dass [mm]a_{0}[/mm] = p*x ist. x ist ja in dem Fall [mm](a_{1} q^{n-1}[/mm] +
> ... + [mm]a_{n} p^{n-1}.[/mm] Aber das stört doch jetzt noch das
> [mm]q^{n}[/mm] oder nicht ? Aber da kann ich ja schreiben [mm]a_{0}[/mm] =

Weil p und q teilerfremd sind, kann p also [mm] $q^n$ [/mm] nicht teilen. Also muss p die Zahl [mm] $a_0$ [/mm] teilen.

> p*x/q oder ??
>  
> Nochmal danke für deine Hilfe
>  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]