matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und GeometrieBeweis Parallelogramm
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Topologie und Geometrie" - Beweis Parallelogramm
Beweis Parallelogramm < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Parallelogramm: Idee
Status: (Frage) beantwortet Status 
Datum: 19:22 Sa 07.01.2012
Autor: Jsassi93

Aufgabe
Zeigen Sie: In einem Parallelogramm sind überliegende Seiten und Innenwinkel kongruent.
(Rat: Zeigen Sie,dass jede Diagonale das Parallelogramm in zwei kongruente Dreiecke zerlegt.)

Ich habe diese Aufgabe angefangen,bin mir aber völlig unsicher,ob das so richtig ist.
Dreieck ACD ist kongruent zu Dreieck ABC (soll gezeigt werden)
Wegen der kongruenten Seiten AB und CD und der Kongruenz der Winkel ABC und ADC,sind die Dreiecke nach SWS kongruent zueinander.
(K4) -> Winkel BC ist kongruent zu Winkel ADC
             CD ist kongruent zu AB
             AC ist kongruent zu AC

falls der Ansatz falsch ist,hat jemand eine andere Idee,wie ich diese Aufgabe lösen könnte?
ich habe davon leider überhaupt keine Ahnung :(

        
Bezug
Beweis Parallelogramm: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Sa 07.01.2012
Autor: M.Rex

Hallo

Da in einem Parallelogramm gegenüberliegende Seiten jeweils gleich lang sind, teilt die Diagonale das Parallelogramm in zwei Dreiecke, die in allen drei Seitenlängen übereinstimmen, also kongruent sind.

Marius


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]