matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieBeweis Multiplikationsformel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Wahrscheinlichkeitstheorie" - Beweis Multiplikationsformel
Beweis Multiplikationsformel < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Multiplikationsformel: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 00:05 Mo 11.05.2009
Autor: kegel53

Aufgabe
Sei [mm] (\Omega,F,P) [/mm] ein Wahrscheinlichkeitsraum.
Zeigen Sie mittels vollständiger Induktion, dass für Ereignisse [mm] A_1,..., A_n\in [/mm] F gilt:
[mm] P(\bigcap_{i=1}^{n} A_i)= P(A_n)* \prod_{i=1}^{n-1} P(A_i| \bigcap_{j=i+1}^{n} A_j) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Leute,
die Aufgabe an sich ist nicht sonderlich schwer, allerdings hakt es dennoch etwas beim Induktionsschritt und es wär klasse, wenn mir jemand helfen könnte. Also Induktionsanfang und -voraussetzung sind klar. Beim Induktionsschritt von k-1 nach k habe ich mir bisher folgendes überlegt:

[mm] P(\bigcap_{i=1}^{k} A_i)= P((A_1 \cap...\cap A_{k-1})\cap A_k) \stackrel{\mathrm{Multiplikationssatz}}= P(A_1 \cap...\cap A_{k-1})* P(A_k| (A_1 \cap...\cap A_{k-1})) \stackrel{\mathrm{IV}}= P(A_{k-1})* \prod_{i=1}^{k-2} P(A_i| \bigcap_{j=i+1}^{k-1} A_j)* P(A_k| (A_1 \cap...\cap A_{k-1}))= [/mm] ?

Naja hier weiß ich nicht weiter, weil ich keinen Weg sehe das Teil irgendwie zu vereinigen Wie gesagt wär toll, wenn jemand helfen könnte. Vielen Dank schon mal.

        
Bezug
Beweis Multiplikationsformel: Antwort
Status: (Antwort) fertig Status 
Datum: 09:14 Mo 11.05.2009
Autor: luis52

Moin,

ich bin's ;-)

Ich wuerde gerne den Notationsoverkill vermeiden und die Behauptung ausformformulieren. Z.z. ist

[mm] P(A_1\cap\dots\cap A_n)=P(A_n)P(A_{n-1}\mid A_{n})P(A_{n-2}\mid A_{n-1}\cap A_n)\cdots P(A_{1}\mid A_2\cap\dots \cap A_{n-1}\cap A_n). [/mm]

Der IA ist klar. Die Formel gelte fur n. Z.z. ist

[mm] P(A_1\cap\dots\cap A_n\cap A_{n+1})=P(A_{n+1})P(A_{n}\mid A_{n+1})P(A_{n-1}\mid A_{n}\cap A_{n+1})\cdots P(A_{1}\mid A_2\cap\dots \cap A_{n}\cap A_{n+1}). [/mm]

Es ist

[mm] $P(A_1\cap\dots\cap A_n\cap A_{n+1})=P((A_1\cap A_{n+1})\cap\cdots\cap (A_n\cap A_{n+1}))=\ldots$ [/mm]

vg Luis


Bezug
                
Bezug
Beweis Multiplikationsformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 Mo 11.05.2009
Autor: kegel53

Hey so trifft man sich wieder :-).
Also ich hab den Hinweis aufgegriffen und nun damit den Induktionsschritt nochmals versucht, allerdings gibts auch hier Probleme.
Es gilt doch:

[mm] P(A_1\cap\dots\cap A_n\cap A_{n+1})=P((A_1\cap A_{n+1})\cap\cdots\cap (A_n\cap A_{n+1}))\stackrel{\mathrm{IV}}=P(A_n\cap A_{n+1})*\prod_{i=1}^{n-1} P((A_i\cap A_{n+1})\mid\bigcap_{j=i+1}^{n} (A_j\cap A_{n+1}))=P(A_n\mid A_{n+1})*P(A_{n+1})*\prod_{i=1}^{n-1} P((A_i\cap A_{n+1})\mid\bigcap_{j=i+1}^{n+1} A_j) [/mm]

Das ist schon beinhahe das was man zeigen soll, aber ich hab in dem Prdokut immer noch das [mm] A_{n+1} [/mm] drin und das müsste noch weg, wobei ich im Moment nicht sehe wie ich das bewerkstellige. Ein Tipp wäre hilfreich. Danke schon mal für die Hilfe.

Bezug
                        
Bezug
Beweis Multiplikationsformel: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Mo 11.05.2009
Autor: luis52

Ich behaupte, fuer Ereignisse $A,B,C$ gilt [mm] $P(A\cap B\mid C\cap B)=P(A\mid C\cap [/mm] B)$.

vg Luis

Bezug
                                
Bezug
Beweis Multiplikationsformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Mo 11.05.2009
Autor: kegel53

Ja ich bin der Meinung das müsste stimmen und unter dieser Annahme ist der Induktionsschritt dann ja auch schon fertig. Bedenken habe jetzt ich nur noch in Sachen Induktionsvoraussetzung. Kann ich die überhaupt so anwenden wie ich es gemacht hab, denn eigentlich lautet die Induktionsvoraussetzung ja $ [mm] P(\bigcap_{i=1}^{n} A_i)= P(A_n)\cdot{} \prod_{i=1}^{n-1} P(A_i| \bigcap_{j=i+1}^{n} A_j) [/mm] $ also sprich ohne dass zusätzlich mit [mm] A_{n+1} [/mm] geschnitten wird. Ist mein Vorgehen dann trotzdem korrekt?

Bezug
                                        
Bezug
Beweis Multiplikationsformel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Mo 11.05.2009
Autor: luis52

Wo ist das Problem? Die IV besagt, dass die Gleichung $ [mm] P(\bigcap_{i=1}^{n} B_i)= P(B_n)\cdot{} \prod_{i=1}^{n-1} P(B_i| \bigcap_{j=i+1}^{n} B_j) [/mm] $ fuer alle Ereignisse [mm] $B_i$ [/mm] gilt, also insbesondere fuer [mm] $B_i=A_i\cap A_{n+1}$. [/mm] Oder verstehe ich dich miss?


vg Luis

Bezug
                                                
Bezug
Beweis Multiplikationsformel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mo 11.05.2009
Autor: kegel53

Ja doch genau das wollte ich wissen. Gut dann ist jetzt alles klar! Meine Vorstellung zur Verwendung der IV war wohl einfach etwas zu eingeschränkt. Dann vielen Dank nochmal und schönen Abend noch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]