matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisBeweis Meromorphe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Komplexe Analysis" - Beweis Meromorphe
Beweis Meromorphe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Meromorphe: korrektur
Status: (Frage) beantwortet Status 
Datum: 16:40 So 08.06.2008
Autor: jan_babayans

Aufgabe
Sei U ⊂ [mm] \IC [/mm] offen und f eine meromorphe Funktion auf U. Zeigen Sie: für [mm] z_{0} [/mm] ∈ U
gilt [mm] Res(\bruch{f'}{f},z_{0})=ord(f,z_{0}) [/mm]

ich habe die Aufgabe so gelöst.
f ist meromorph auf dem gebiet U [mm] \subset \IC,und [/mm] f  [mm] \not= [/mm] 0 , so besitze er ns a1,a2 .........am,polstellen b1,b2........................bm die mit ihren ordnung zu zählen sind.sei m die ordnung von [mm] (f,z_{0}) [/mm] der meromorph funktion f an der stelle [mm] z_{0}, [/mm] so lässt sich [mm] f(z)=c_{m}(z-z_{0})^m [/mm] + [mm] c_{m-1}(z-z_{0})^{m-1}....... [/mm] schreiben, so hat [mm] \bruch{f'}{f} [/mm] um [mm] z_{0} [/mm] die laurententwicklung mit  [mm] \bruch{f'(z)}{f(z)}=\bruch{mc_{m}(z-z_{0})^{m-1}+.............}{c_{m}(z-z_{0})^{m}+.........} [/mm]
=  [mm] \bruch {m}{(z-z_{0})} [/mm] + f(z) (ähnlich) so ist [mm] Res(\bruch{f'}{f},z_{0})=m [/mm] .


meine frage?reicht das für den beweis oder fehlt was?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis Meromorphe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:48 Di 10.06.2008
Autor: rainerS

Hallo!

> Sei U ⊂ [mm]\IC[/mm] offen und f eine meromorphe
> Funktion auf U. Zeigen Sie: für [mm]z_{0}[/mm] ∈ U
>  gilt [mm]Res(\bruch{f'}{f},z_{0})=ord(f,z_{0})[/mm]
>  ich habe die Aufgabe so gelöst.
>  f ist meromorph auf dem gebiet U [mm]\subset \IC,und[/mm] f  [mm]\not=[/mm]
> 0 , so besitze er ns a1,a2 .........am,polstellen
> b1,b2........................bm die mit ihren ordnung zu
> zählen sind.sei m die ordnung von [mm](f,z_{0})[/mm] der meromorph
> funktion f an der stelle [mm]z_{0},[/mm] so lässt sich
> [mm]f(z)=c_{m}(z-z_{0})^m[/mm] + [mm]c_{m-1}(z-z_{0})^{m-1}.......[/mm]
> schreiben, so hat [mm]\bruch{f'}{f}[/mm] um [mm]z_{0}[/mm] die
> laurententwicklung mit  
> [mm]\bruch{f'(z)}{f(z)}=\bruch{mc_{m}(z-z_{0})^{m-1}+.............}{c_{m}(z-z_{0})^{m}+.........}[/mm]
>  =  [mm]\bruch {m}{(z-z_{0})}[/mm] + f(z) (ähnlich) so ist
> [mm]Res(\bruch{f'}{f},z_{0})=m[/mm] .
>  
>
> meine frage?reicht das für den beweis oder fehlt was?

Die Beweisidee ist richtig, aber du solltest das etwas besser aufschreiben.

Zum Beispiel stimmt deine Reihenentwicklung nicht, denn deine Exponenten von [mm] $(z-z_{0})$ [/mm] werden kleiner statt größer.

Viele Grüße
   Rainer

Bezug
                
Bezug
Beweis Meromorphe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:29 Mi 11.06.2008
Autor: jan_babayans

vielen dank für die antwort.
ich musste schon selbst feststellelen, dass meine lösung nicht so komplete richtig ist.man kann sie auch einfacher beweisen , indem man eine andere funkion def., die holomorph ist in punkt [mm] z_{0} [/mm] ist und dann mit der funktion f weiterrechnen, idem man sie ableitet und dann die ordnung bestimmt.
muss mich mit den anderen aufgaben beschäftigen, sonst würde ich die komplete lösung hinschreiben.
danke nochmal.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]