matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe ZahlenBeweis Lösungen liegen imKreis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - Beweis Lösungen liegen imKreis
Beweis Lösungen liegen imKreis < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Lösungen liegen imKreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:15 Mo 09.11.2009
Autor: together

Aufgabe
Seien n [mm] \in \IN [/mm] \ {0} und [mm] a_{i} \in \IC [/mm] mit [mm] |a_{i}|< [/mm] 1. Sei [mm] P(z)=z^n+a_{1}z^{n-1}+...+a_{n-1}z+a_{n}. [/mm]
Zeigen Sie, dass alle Lösungen von P(z)=0 innerhalb des Kreises |z|=n liegen.

Hallo zusammen,

wie führe ich solch einen Beweis?
Mit vollständiger Induktion?
Und ich dachte, da [mm] |a_{i}|< [/mm] 1, kann die 1 in P(z) nicht vorkommen....aber das scheint ja falsch zu sein.

Ich bin für Tipps dankbar.

Ich habe die Frage in keinem anderen Forum oder keinen anderen Internetseiten gestellt.

VG
together

        
Bezug
Beweis Lösungen liegen imKreis: Antwort
Status: (Antwort) fertig Status 
Datum: 09:36 Mo 09.11.2009
Autor: pelzig

Sei [mm]P(z)=0[/mm]. Wenn [mm]|z|\ge 1[/mm] ist, dann ist [mm] $$|z|^n=|P(z)-z^n|=\left|\sum_{i=0}^{n-1}a_iz^i\right|\le\sum_{i=0}^{n-1}|a_i||z|^i<\sum_{i=0}^{n-1}|z|^i\le n|z|^{n-1}$$ [/mm] Gruß, Robert

Bezug
                
Bezug
Beweis Lösungen liegen imKreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:42 Mo 09.11.2009
Autor: together


> Sei [mm]P(z)=0[/mm]. Wenn [mm]|z|\ge 1[/mm] ist, dann ist
> [mm]|z|^n=|P(z)-z^n|=\left|\sum_{i=0}^{n-1}a_iz^i\right|\le\sum_{i=0}^{n-1}|a_i||z|^i<\sum_{i=0}^{n-1}|z|^i\le n|z|^{n-1}[/mm]
> Gruß, Robert

Und das reicht als Beweis?

VG
together

Bezug
                        
Bezug
Beweis Lösungen liegen imKreis: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 Mo 09.11.2009
Autor: fred97


> > Sei [mm]P(z)=0[/mm]. Wenn [mm]|z|\ge 1[/mm] ist, dann ist
> >
> [mm]|z|^n=|P(z)-z^n|=\left|\sum_{i=0}^{n-1}a_iz^i\right|\le\sum_{i=0}^{n-1}|a_i||z|^i<\sum_{i=0}^{n-1}|z|^i\le n|z|^{n-1}[/mm]
> > Gruß, Robert
>
> Und das reicht als Beweis?


Na, klar

Robert hat gezeigt: aus $|z| [mm] \ge [/mm] 1$ folgt $|z| [mm] \le [/mm] n$

Ist $|z| < 1$ , so ist trivialerweise $|z| [mm] \le [/mm] n$

FRED


>  
> VG
>  together


Bezug
                                
Bezug
Beweis Lösungen liegen imKreis: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:28 Mo 09.11.2009
Autor: together

Vielen Dank an euch!

VG
together

Bezug
                                
Bezug
Beweis Lösungen liegen imKreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Di 10.11.2009
Autor: peeetaaa

ach und da muss man jetzt gar nichts mehr auflösen oder so?

Bezug
                                        
Bezug
Beweis Lösungen liegen imKreis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Di 10.11.2009
Autor: fred97

Nein

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]