matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDeterminantenBeweis Leibnizformel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Determinanten" - Beweis Leibnizformel
Beweis Leibnizformel < Determinanten < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Leibnizformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Mi 30.04.2008
Autor: dieanne

Aufgabe
Es sei A [mm] \in (n\times [/mm] n, K) eine Matrix mit zugehörigem charakteristischen Polynom [mm] p_{A}(t)=c_{n}*t^n+...+c_{1}*t+c_{0}. [/mm]
Wir definieren die Spur einer Matrix [mm] A=(a_{ij}) [/mm] als die Summe ihrer Diagonalelemente tr(A):= [mm] \summe_{i=1}^{n}a_{ii}. [/mm]

Zeigen Sie mit Hilfe der Leibnizformel, dass der Koeffizient [mm] c_{n-1} [/mm] im charakteristischen Polynom gerade [mm] (-1)^{n-1}*tr(A) [/mm] ist.  

Hallo,

ich komme bei der Aufgabe irgendwie nicht weiter. Ich habe mir nochmal die Formel angeguckt und auch verstanden wie man die Determinante damit ausrechnet, aber wie rechne ich damit jetzt ein speziellen Koeffizienten aus?

Kann mir jemand mal einen Denkanstoß geben?

Vielen Dank!

        
Bezug
Beweis Leibnizformel: Antwort
Status: (Antwort) fertig Status 
Datum: 01:15 Do 01.05.2008
Autor: Zneques

Hallo,

Der Koeffizient  [mm] c_{n-1} [/mm] steht vor dem [mm] t^{n-1}. [/mm]
Du musst also schauen bei welchen Berechnungen für die Determinate Terme mit [mm] t^{n-1} [/mm] entstehen.
Schreibe dir mal eine 3x3-Matrix A-t*Id auf und achte bei der Berechnung der Determinate besonders auf Terme mit [mm] t^2. [/mm] Woher kommen sie ? Kann man das verallgemeinern ?

Ciao.

Bezug
                
Bezug
Beweis Leibnizformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Fr 02.05.2008
Autor: die_conny

Hallo, ich sitze vor dem selben Beweis und habe auch eine Frage dazu ;)

Also, Terme, in denen t-1 entstehen, gibt es bei Berechnung einer beliebigen Matrix nur dann, wenn die Permutation folgendermaßen aussieht:

[mm] \pmat{ 1 & 2 & 3 & 4 & (...) & n \\ 1 & 2 & 3 & 4 & (...) & n} [/mm]

(denn ich brauche mindestens n-1 diagonalelemente, und dies erfüllt nur diese Permutation)

Somit brauche ich auch nur den Summanden Betrachten, der für diese Permutation entsteht. Erstmal ist das Signum dieser Permutation 1, denn es gibt keine Fehlstände, also ergibt sich folgender Term: (für bel. Matrix A = aij):

(a11 - t)*(a22-t)*...*(ann - t)

so, nun muss sich daraus aber ergeben, dass (-1)^(n-1) * (a11 + a22 + ... + ann) * t^(n-1) gilt.

Und hier komm ich nun nicht wirklich weiter. Wie kann ich das denn jetzt zeigen? Weil ich kann ja nicht für beliebig viele Faktoren das ganze ausrechnen, um es zu zeigen.
Oder kann ich nun einfach sagen, dass sich das daraus ergibt? (denn klar ist es mir auch, aber ich kann es nicht erklären...)

Kann mir da jemand weiterhelfen?

Vielen Dank im Voraus, die_conny

Bezug
                        
Bezug
Beweis Leibnizformel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Fr 02.05.2008
Autor: Zneques

Hallo,

In den Produkt
(a+b)*(c+d)=ac+ad+bc+bd
bestehen die Summanden immer aus einem Teil des ersten Faktor und einem Teil des Zweiten.
Das gilt auch verallgemeinert für :
[mm] (a_1+a_2)*(b_1+b_2)*...*(z_1+z_2)=\summe a_{i_1}*b_{i_2}*...*z_{i_n}, [/mm]
wobei [mm] i_j\in\{1,2\} \forall j\in\{1,...,n\}. [/mm]

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Determinanten"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]