matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBeweis Konvergenz & Divergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Beweis Konvergenz & Divergenz
Beweis Konvergenz & Divergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Konvergenz & Divergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:10 Sa 17.05.2008
Autor: Dan86

Aufgabe
Seien [mm] (a_n) [/mm] und [mm] (b_n) [/mm] zwei reelle Folgen mit positiven Gliedern
und [mm] \limes_{n\rightarrow\infty} \bruch{a_n}{b_n} [/mm] < unendlich.

Beweisen oder Widerlegen Sie die folgenden Aussagen:

1. [mm] \summe_{n=0}^{\infty} a_n [/mm] konvergiert genau dann, wenn [mm] \summe_{n=0}^{\infty} b_n [/mm] konvergiert.
2. [mm] \summe_{n=0}^{\infty} a_n [/mm] divergiert genau dann, wenn [mm] \summe_{n=0}^{\infty} b_n [/mm] divergiert.

Hallo Leute,
Ich habe bei dieser Aufgabe zuerst versucht Gegenbeispiele zu suchen aber keine gefunden. Also gehe ich mal davon aus, dass die Aussagen wahr sind.

Ich versuche nun jeweils zwei Richtungen zu zeigen.

Zur 1. Aufgabe
1. Wenn [mm] a_n [/mm] konvergiert, dann konvergiert [mm] b_n. [/mm]
2. Wenn [mm] b_n [/mm] konvergiert, dann konvergiert [mm] a_n. [/mm]

Hier habe ich die zweite Annahme, wenn [mm] b_n [/mm] konvergiert, dann konvergiert [mm] a_n [/mm] (wohl das einfache der beiden *gg*). Mit dem Majorantenkriterium gezeigt, dass es stimmt. Wie zeige ich aber die erste Annahme?

Zur 2. Aufgabe
1. Wenn [mm] a_n [/mm] divergiert, dann divergiert [mm] b_n. [/mm]
2. Wenn [mm] b_n [/mm] divergiert, dann divergiert [mm] a_n. [/mm]

Auch hier habe ich die zweite Annahme, wenn [mm] b_n [/mm] divergiert, dann divergiert [mm] a_n [/mm] mit dem Minoratenkriterium zeigen können. Aber bei der ersten Annahme fehler mir wieder der Ansatz.

Wäre wieder mal echt super, wenn ihr mir einen Hinweis geben könntet.

Grüße

Daniel

Ich habe diese Frage in keinem anderem Internetforum gestellt.




Edit: Ich hatte eben einen Geistesblitz und die Aufgaben jetzt alleine hinbekommen. Die Fragen haben sich für mich damit geklärt.

Grüße

Daniel

Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]