matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBeweis Konvergenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Beweis Konvergenz
Beweis Konvergenz < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Konvergenz: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:57 Di 18.07.2006
Autor: tinkabell

Aufgabe
Beweisen Sie:
Wenn die Reihe
[mm] \sum_{n=1}^{\infty}A_n; a_0 \g [/mm]
konvergiert, so auch
[mm] \sum_{n=1}^{\infty}(A_n)^2 [/mm]

Wie soll der Beweis bitte aussehen??


#
# Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis Konvergenz: Fingerzeige
Status: (Antwort) fertig Status 
Datum: 20:07 Di 18.07.2006
Autor: Gnometech

Grüße!

Nun, wie der Beweis aussehen soll, sollst Du Dir ja selbst überlegen, das ist schließlich die Aufgabe. ;-)

Einige Hinweise, die Dir bestimmt auf die Sprünge helfen:

Wenn die Reihe [mm] $\sum_{n=1}^\infty A_n$ [/mm] konvergiert, dann ist die Folge [mm] $(A_n)_{n \in \IN}$ [/mm] eine Nullfolge, insbesondere ist ab einem gewissen Index jedes Folgenglied kleiner als 1.

Wenn aber nun [mm] $A_n [/mm] < 1$ gilt, wie lassen sich dann [mm] $A_n$ [/mm] und [mm] $(A_n)^2$ [/mm] vergleichen?

Zu guter letzt: das steht zwar nicht in der Aufgabe, aber gelingt es Dir, Dir ein Beispiel zu überlegen, an dem deutlich wird, dass man auf die Voraussetzung [mm] $A_n \geq [/mm] 0$ nicht verzichten kann?

Viel Erfolg!

Lars

Bezug
                
Bezug
Beweis Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:36 Mi 19.07.2006
Autor: tinkabell

also, danke, aber die antwort bringt mich nicht so wirklich weiter.... und nun?? :)

Bezug
                        
Bezug
Beweis Konvergenz: Majorantenkriterium
Status: (Antwort) fertig Status 
Datum: 21:40 Mi 19.07.2006
Autor: Loddar

Hallo tinkabell!


Ergänzend zu Gnometech's Hinweisen sollte der Groschen doch mit dem Stichwort "[]Majorantenkriterium" fallen, oder? ;-)


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]