matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesBeweis Gleichmächtigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Sonstiges" - Beweis Gleichmächtigkeit
Beweis Gleichmächtigkeit < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Gleichmächtigkeit: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:04 Mi 11.11.2009
Autor: Studentin87

Aufgabe
Beweisen Sie für beliebige Mengen K, L, M, N:
Wenn K [mm] \sim [/mm] M und L [mm] \sim [/mm] N, dann ist K [mm] \times [/mm] L [mm] \sim [/mm] M [mm] \times [/mm] N, wobei das Zeichen [mm] \sim [/mm] die Gleichmächtigkeit und das Zeichen [mm] \times [/mm] das Kreuzprodukt bezeichnet.

Man weiß ja, dass K nach M und L nach N bijektive Abbildungen sind. Damit K [mm] \times [/mm] L [mm] \sim [/mm] M [mm] \times [/mm] N erfüllt ist, muss es nun eine bijektive Abbildung h: K [mm] \times [/mm] L [mm] \to [/mm]  M [mm] \times [/mm] N geben. Die Injektivität habe ich bereits gezeigt, nun muss ich nur noch zeigen, dass diese Abbildung surjektiv ist, doch leider finde ich keinen Ansatz. Das muss doch auch wieder etwas mit geordneten Paaren sein!
Kann mir jemand helfen?

        
Bezug
Beweis Gleichmächtigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:08 Mi 11.11.2009
Autor: fred97


> Beweisen Sie für beliebige Mengen K, L, M, N:
>  Wenn K [mm]\sim[/mm] M und L [mm]\sim[/mm] N, dann ist K [mm]\times[/mm] L [mm]\sim[/mm] M
> [mm]\times[/mm] N, wobei das Zeichen [mm]\sim[/mm] die Gleichmächtigkeit und
> das Zeichen [mm]\times[/mm] das Kreuzprodukt bezeichnet.
>  Man weiß ja, dass K nach M und L nach N bijektive
> Abbildungen sind.

....   merkwürdiger Satz ! Du meinst sicher dass es eine bij. Abb. von K nach M und eine bijektive Abb. von L nach N gibt.


>  Damit K [mm]\times[/mm] L [mm]\sim[/mm] M [mm]\times[/mm] N erfüllt
> ist, muss es nun eine bijektive Abbildung h: K [mm]\times[/mm] L [mm]\to[/mm]
>  M [mm]\times[/mm] N geben.

Richtig


> Die Injektivität habe ich bereits
> gezeigt, nun muss ich nur noch zeigen, dass diese Abbildung
> surjektiv ist, doch leider finde ich keinen Ansatz. Das
> muss doch auch wieder etwas mit geordneten Paaren sein!
> Kann mir jemand helfen?

So nicht, wenn Du uns nicht mitteilst, wie die Abb. h aussieht !!

FRED




Bezug
                
Bezug
Beweis Gleichmächtigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:30 Mi 11.11.2009
Autor: Studentin87

Wir haben in der Vorlesung definiert, dass die Gleichmächtigkeit von K und M bedeutet, dass es eine bijektive Abbildung f: K [mm] \to [/mm] M gibt und wegen der Gleichmächtigkeit von L und N gibt es eine bijektive Abbildung g: L [mm] \to [/mm] N.
Wir definieren nun eine Abbildung h: K [mm] \times [/mm] L [mm] \to [/mm] M [mm] \times [/mm] N durch h((x,y))=(f(x),g(y)). Wenn wir zeigen können, dass h bijektiv ist, dann ist der Beweis abgeschlossen. Wenn (r,s), (t,u) [mm] \in [/mm] K [mm] \times [/mm] L und h((r,s))=h((t,u)), dann ist (f(r),g(s))=(f(t),g(u)) und nach der Definition von geordneten Paaren gilt: f(r)=f(t) und g(s)=g(u)
Da f und g injektiv sind, folgt daraus r=t und s=u. Somit haben wir gezeigt, dass h injektiv ist. Nun muss nur noch gezeigt werden, dass h surjektiv ist.

Und da finde ich keinen Ansatz für!?

Bezug
                        
Bezug
Beweis Gleichmächtigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 16:37 Mi 11.11.2009
Autor: fred97

Mit Verlaub, aber die Surjektivität von h ist ganz einfach zu zeigen:

Sei (a,b) [mm] \in [/mm] MxN.

f ist surjektiv, also gibt es ein x [mm] \in [/mm] K mit f(x) = a

g ist surjektiv, also gibt es ein y [mm] \in [/mm] L mit g(y) = b.

Dann ist h(x,y) = (a,b)

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]