matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitBeweis Gleichheit von Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - Beweis Gleichheit von Funktion
Beweis Gleichheit von Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Gleichheit von Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 Di 12.04.2011
Autor: Loriot95

Aufgabe
Seien f: [mm] \IR [/mm] -> [mm] \IR [/mm] und g: [mm] \IR [/mm] -> [mm] \IR [/mm] zwei stetige Funktionen auf [mm] \IR. [/mm] Beweisen Sie: Gilt f(x) = g(x) für alle x [mm] \in \IQ, [/mm] dann ist f = g.

Guten Tag,

ich bräuchte bei dieser Aufgabe eure Hilfe. Mir fehlt die richtige Idee... Hab bis jetzt folgendes:

[mm] "\Leftarrow": [/mm] Sei f = g [mm] \Rightarrow \forall [/mm] x [mm] \in \IQ: [/mm] f(x) = g(x).

[mm] "\Rightarrow": [/mm] Wähle  [mm] x_{0} \in \IR \setminus \IQ \Rightarrow \forall [/mm] p,q [mm] \in \IZ, [/mm] q [mm] \not= [/mm] 0: [mm] x_{0} \not= \bruch{p}{q} [/mm]

Ab da komme ich leider nicht weiter... Es ist klar das ich irgendwie die Stetigkeit noch benutzen muss, allerdings weiß ich nicht wo und wie. Würde mich freuen, wenn mir jemand einen Tipp geben könnte.

LG Loriot95

        
Bezug
Beweis Gleichheit von Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:15 Di 12.04.2011
Autor: fred97

Nimm ein [mm] x_0 \in \IR. [/mm] Da [mm] \IQ [/mm] dicht liegt in [mm] \IR, [/mm] gibt es eine Folge [mm] (r_n) [/mm] in [mm] \IQ [/mm] mit [mm] r_n \to x_0. [/mm]

1. In welcher Beziehung stehen [mm] f(r_n) [/mm] und [mm] g(r_n) [/mm] ?

2. Sind die Folgen [mm] (f(r_n)) [/mm] und [mm] (g(r_n)) [/mm] konvergent. ? Wenn ja, warum, wogegen streben sie jeweils ?

3. In welcher Beziehung stehen dann [mm] f(x_0) [/mm] und [mm] g(x_0) [/mm] ?


FRED

Bezug
                
Bezug
Beweis Gleichheit von Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:16 Di 12.04.2011
Autor: Loriot95


> Nimm ein [mm]x_0 \in \IR.[/mm] Da [mm]\IQ[/mm] dicht liegt in [mm]\IR,[/mm] gibt es
> eine Folge [mm](r_n)[/mm] in [mm]\IQ[/mm] mit [mm]r_n \to x_0.[/mm]
>  
> 1. In welcher Beziehung stehen [mm]f(r_n)[/mm] und [mm]g(r_n)[/mm] ?

Beide [mm] f(r_n) [/mm] und [mm] g(r_n) [/mm] nehmen die Gleichen Werte an und sind somit identisch?  

> 2. Sind die Folgen [mm](f(r_n))[/mm] und [mm](g(r_n))[/mm] konvergent. ? Wenn
> ja, warum, wogegen streben sie jeweils ?

Ja, sie streben jeweils  gegen [mm] f(x_{0}) [/mm] bzw. [mm] g(x_{0}) [/mm] aufgrund der Stetigkeit.

> 3. In welcher Beziehung stehen dann [mm]f(x_0)[/mm] und [mm]g(x_0)[/mm] ?

Hm na ja da ich das zeigen soll, gehe ich davon aus das sie identisch sind. Ich verstehe aber nicht weshalb. Da sich die beiden Folgen beliebig nahe an diese Grenzwerte annähren und immer den gleichen Wert annehmen für jedes n [mm] \in \IN [/mm] ?

> FRED

Vielen Dank für deine Hilfe.

LG Loriot95

Bezug
                        
Bezug
Beweis Gleichheit von Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:28 Di 12.04.2011
Autor: fred97


> > Nimm ein [mm]x_0 \in \IR.[/mm] Da [mm]\IQ[/mm] dicht liegt in [mm]\IR,[/mm] gibt es
> > eine Folge [mm](r_n)[/mm] in [mm]\IQ[/mm] mit [mm]r_n \to x_0.[/mm]
>  >  
> > 1. In welcher Beziehung stehen [mm]f(r_n)[/mm] und [mm]g(r_n)[/mm] ?
>  Beide [mm]f(r_n)[/mm] und [mm]g(r_n)[/mm] nehmen die Gleichen Werte an und
> sind somit identisch?  


Ja, nach Vor. gilt: [mm] f(r_n)=g(r_n) [/mm]  für jedes  n



> > 2. Sind die Folgen [mm](f(r_n))[/mm] und [mm](g(r_n))[/mm] konvergent. ? Wenn
> > ja, warum, wogegen streben sie jeweils ?
>  Ja, sie streben jeweils  gegen [mm]f(x_{0})[/mm] bzw. [mm]g(x_{0})[/mm]
> aufgrund der Stetigkeit.


Richtig.

>  > 3. In welcher Beziehung stehen dann [mm]f(x_0)[/mm] und [mm]g(x_0)[/mm] ?

>  Hm na ja da ich das zeigen soll, gehe ich davon aus das
> sie identisch sind. Ich verstehe aber nicht weshalb. Da
> sich die beiden Folgen beliebig nahe an diese Grenzwerte
> annähren und immer den gleichen Wert annehmen für jedes n
> [mm]\in \IN[/mm] ?


Mann , mann, Du mußt doch obige Erkenntnisse nur zusammenbauen !!!


    [mm] $f(x_0)= \limes_{n\rightarrow\infty}f(r_n)= \limes_{n\rightarrow\infty}g(r_n)=g(x_0)$ [/mm]


FRED

>  > FRED

> Vielen Dank für deine Hilfe.
>  
> LG Loriot95


Bezug
                                
Bezug
Beweis Gleichheit von Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:30 Di 12.04.2011
Autor: Loriot95

Ok. Vielen Dank für deine Hilfe.

LG loriot95

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]