matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenNaive MengenlehreBeweis Gleichheit von 2 Mengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Naive Mengenlehre" - Beweis Gleichheit von 2 Mengen
Beweis Gleichheit von 2 Mengen < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Gleichheit von 2 Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Mi 24.11.2010
Autor: angu

Aufgabe
Zeigen Sie: [mm]\{x \in R; x > 0\} = \{ \bruch{1}{y}; y > 0\};[/mm]

Offensichtlich handelt es sich bei den beiden Mengen um die Menge der positiven reellen Zahlen. Ich habe im folgenden versucht, die Gleichheit der beiden Mengen formal zu beweisen:

Beweis: Zu zeigen ist, dass A = [mm]\{x \in R; x > 0\}[/mm] und B = [mm]\{\bruch{1}{y}; y > 0\}[/mm] die gleichen Elemente besitzen.

Also ist zu zeigen:

1) A [mm]\subseteq[/mm] B, also x [mm] \in A[/mm] => x [mm] \in B[/mm];
    
2) B [mm]\subseteq[/mm] A, also y [mm] \in B[/mm] => y [mm] \in A[/mm];

zu 1) x = [mm] \bruch{1}{1/x} \in A[/mm] => x [mm] \in B[/mm];

zu 2) [mm]\bruch{1}{y}[/mm] = [mm] \bruch{1/y}{1} \in B[/mm] => [mm]\bruch{1}{y} \in A[/mm];

aus 1) und 2) folgt A = B; q.e.d.

Ist dieser Beweis korrekt geführt?

Herzlichen Dank,
Andreas

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis Gleichheit von 2 Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 Di 30.11.2010
Autor: chrisno

Ich bin ja schon lange aus diesem Geschäft. Dein Beweis überzeugt mich nicht. Ich denke, dass DU bei so einem Beweis jedes Gleichheitszeichen und jede Folgerung mit einem Axiom oder einem Satz begründen musst. Es fehlt mir ein Schritt. Du musst doch zeigen, dass wenn x in A ist, auch 1/x in A ist. Das ist so, weil es in R>0 das multiplikative Inverse gibt. Das steht bei Dir aber nicht.

Bezug
        
Bezug
Beweis Gleichheit von 2 Mengen: 2. Antwort
Status: (Antwort) fertig Status 
Datum: 20:07 Di 21.12.2010
Autor: wieschoo

Ich muss da chrisno recht geben
> Zeigen Sie: [mm]\{x \in R; x > 0\} = \{ \bruch{1}{y}; y > 0\};[/mm]
>  
> Offensichtlich handelt es sich bei den beiden Mengen um die
> Menge der positiven reellen Zahlen. Ich habe im folgenden
> versucht, die Gleichheit der beiden Mengen formal zu
> beweisen:
>  
> Beweis: Zu zeigen ist, dass A = [mm]\{x \in R; x > 0\}[/mm] und B =
> [mm]\{\bruch{1}{y}; y > 0\}[/mm] die gleichen Elemente besitzen.
>  
> Also ist zu zeigen:
>
> 1) A [mm]\subseteq[/mm] B, also x [mm]\in A[/mm] => x [mm]\in B[/mm];
>      
> 2) B [mm]\subseteq[/mm] A, also y [mm]\in B[/mm] => y [mm]\in A[/mm];

Was ist A?
[mm]A:=\{x\in \IR\;|\;x>0\}[/mm],[mm]B=\{\frac{1}{y}\; |\;y>0\}[/mm]

>  
> zu 1) x = [mm]\bruch{1}{1/x} \in A[/mm] => x [mm]\in B[/mm];

Der ist wirklich ziemlich kurz.
Sei [mm]x\in A[/mm], d.h. [mm]x\in\IR[/mm] und [mm]x\ge 0[/mm]. Da [mm]\IR[/mm] (Steht in der Aufgabe nun [mm]\IR[/mm] oder [mm]R\,[/mm]) ein Körper ist existiert [mm]x^{-1}=\frac{1}{x}[/mm]. Und jetzt musst du auch noch begründen, dass auch [mm]x^{-1}>0[/mm] gilt. Dann hast du [mm]x\in A\Rightarrow x\in B[/mm].

>  
> zu 2) [mm]\bruch{1}{y}[/mm] = [mm]\bruch{1/y}{1} \in B[/mm] => [mm]\bruch{1}{y} \in A[/mm];

Wenn man das formal machen möchte, dann finde ich die Aufgabe nicht wirklich vollständig. Wer garantiert denn [mm]\frac{1}{y}\not\in \IC\setminus \IR[/mm] ??? Sollte dastehen:
[mm]\ldots = \{\frac{1}{y}\in \IR \;|\; y>0\}[/mm]
Dann könntest du dir das so einfach machen und [mm]\Rightarrow[/mm] benutzen.

Also der interessante Teil ist zu beweisen, dass aus x>0 folgt, dass auch der Kehrwert >0 ist.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]