matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikBeweis E(X+Y) = E(X) + E(Y)
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - Beweis E(X+Y) = E(X) + E(Y)
Beweis E(X+Y) = E(X) + E(Y) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis E(X+Y) = E(X) + E(Y): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 So 22.04.2012
Autor: Strv

Aufgabe
Assume that the random variables X und Y are jointly distributed with probability distribution funktion [mm] f_{xy}(x,y) [/mm] and marginal probability functions [mm] f_X(x) [/mm] and [mm] f_Y(y) [/mm]
Prove the following relationship: E(X+Y) = E(X) + E(Y)

Ich habe in diesem Forum bereits einen Beweis für dieselbe Fragestellung, allerdings bei diskreter Wahrscheinlichkeitsverteilung gefunden, kann es aber leider nicht wirklich auf ne stetige übertragen.

Ich hab's geschafft die Formel zur Berechnung des Erwartungswerts rauszusuchen
E(X) = [mm] \integral_{-\infty}^{\infty}{x\*f(x) dx} [/mm]  

E(Y) = [mm] \integral_{-\infty}^{\infty}{y\*f(y) dy} [/mm]

Allerdings hab ich keine Ahnung wie ich damit E(X+Y) basteln soll. :D
Ich hoffe ihr könnt mir helfen. Vielen Dank!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis E(X+Y) = E(X) + E(Y): Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 So 22.04.2012
Autor: kamaleonti

Hallo,
> Assume that the random variables X und Y are jointly
> distributed with probability distribution funktion
> [mm]f_{xy}(x,y)[/mm] and marginal probability functions [mm]f_X(x)[/mm] and
> [mm]f_Y(y)[/mm]
>  Prove the following relationship: E(X+Y) = E(X) + E(Y)

Diese Aussage gilt immer für Erwartungswerte!
Deswegen frage ich mich, was hier genau gezeigt werden soll.

>  Ich habe in diesem Forum bereits einen Beweis für
> dieselbe Fragestellung, allerdings bei diskreter
> Wahrscheinlichkeitsverteilung gefunden, kann es aber leider
> nicht wirklich auf ne stetige übertragen.
>
> Ich hab's geschafft die Formel zur Berechnung des
> Erwartungswerts rauszusuchen
>  E(X) = [mm]\integral_{-\infty}^{\infty}{x\*f(x) dx}[/mm]  
>
> E(Y) = [mm]\integral_{-\infty}^{\infty}{y\*f(y) dy}[/mm]

Was wäre denn der Erwartungswert von X+Y ?

Vorschlag:   [mm] \int (x+y)f_{xy}(x,y)dxdy. [/mm]

Dieses Integral lässt sich zerlegen unter Benutzung der Randdichten:

         [mm] f_Y(y)=\int f_{xy}(x,y)dx, \qquad f_X(x)=\int f_{xy}(x,y)dy, [/mm]

LG


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]