matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenBeweis Dreiecksungeichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Reelle Analysis mehrerer Veränderlichen" - Beweis Dreiecksungeichung
Beweis Dreiecksungeichung < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Dreiecksungeichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Mo 05.04.2010
Autor: mathesx

Aufgabe
Sei [mm] f:\IR\times\IR \to \IR, [/mm] f(x,y):=|x-y|+1.
Zeigen sie, dass die Dreiecksungleichung gilt.

Hallo an alle,

Es ist f(x,y) [mm] \le [/mm] f(x,z) + f(z,y) zu zeigen.
Habe mir folgendes überlegt:

Seien [mm] x,y,z\in\IR. [/mm]
Dann ist |x-y|+1 = |(x-z)+(z-y)|+1 [mm] \le (|x-z|+\bruch{1}{2})+(|z-y|+\bruch{1}{2}). [/mm]
Bis hierhin ist ja noch nix passiert...

Meine Frage ist, ob ich jetzt einfach mit  
[mm] (|x-z|+\bruch{1}{2})+(|z-y|+\bruch{1}{2}) \le [/mm] (|x-z|+1)+(|z-y|+1)
abschätzen kann?

Viele Grüße

mathes

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Beweis Dreiecksungeichung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 Mo 05.04.2010
Autor: rainerS

Hallo!

Erstmal herzlich [willkommenvh]

> Sei [mm]f:\IR\times\IR \to \IR,[/mm] $f(x,y):=|x-y|+1$.
>  Zeigen sie, dass die Dreiecksungleichung gilt.
>  Hallo an alle,
>  
> Es ist $f(x,y) [mm] \le [/mm]  f(x,z) + f(z,y)$ zu zeigen.
> Habe mir folgendes überlegt:
>  
> Seien [mm]x,y,z\in\IR.[/mm]
> Dann ist [mm]|x-y|+1 = |(x-z)+(z-y)|+1 \le (|x-z|+\bruch{1}{2})+(|z-y|+\bruch{1}{2}).[/mm]
>  
> Bis hierhin ist ja noch nix passiert...
>
> Meine Frage ist, ob ich jetzt einfach mit  
> [mm](|x-z|+\bruch{1}{2})+(|z-y|+\bruch{1}{2}) \le (|x-z|+1)+(|z-y|+1) [/mm]
>  abschätzen kann?

Aber natürlich, denn links steht

[mm] |x-z|+|z-y|+1 [/mm]

und rechts

[mm] |x-z|+|z-y|+2 [/mm]

(per Assoziativität der Addition).

  Viele Grüße
     Rainer

Bezug
                
Bezug
Beweis Dreiecksungeichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:49 Di 06.04.2010
Autor: mathesx

Hallo Rainer,

danke für die Deine Hilfe.

Viele Grüße

mathes



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]