matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGruppe, Ring, KörperBeweis Boolscher Ring
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Gruppe, Ring, Körper" - Beweis Boolscher Ring
Beweis Boolscher Ring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Boolscher Ring: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:09 Mo 19.11.2007
Autor: Vectro

Hallo, ich habe meine Zweifel bezüglich einer Aufgabe...

Ein Ring (B,+, ·) mit Einselement heißt Boolescher Ring, wenn für
alle Elemente [mm]a\not=0 [/mm] gilt [mm] a \cdot a=a[/mm]  (solche Elemente heißen Idempotent). Zeigen Sie: für alle a,b aus B gilt: a·b=b·a

so weit hab ich 2 mögliche Lösungen bin mir aber nicht sicher, welche bzw. ob überhaupt eine, richtig ist.

1.
[mm]a \cdot a=a \Rightarrow (a+b)\cdot(a+b)=(a+b) [/mm]
[mm]a \cdot a + a \cdot b + b \cdot a + b \cdot b= (a+b)[/mm]
[mm]a + a \cdot b + b \cdot a + b = (a+b) [/mm]
[mm](a+b) + a \cdot b + b \cdot a = (a+b) [/mm]
[mm]a \cdot b + b \cdot a = 0 [/mm]
[mm]a \cdot b + a \cdot b + b \cdot a = a \cdot b [/mm]
[mm]\Rightarrow b \cdot a = a \cdot b [/mm]

Zum letzten Schritt muss man sagen, dass ich a+a=0 bereits eine Aufgabe vorher bewiesen habe.

2.

dazu muss man sagen das ich davon nicht sehr überzeugt bin...

[mm] a \cdot 1 = a[/mm]
[mm] a \cdot a = a[/mm]
[mm] \rightarrow a=1[/mm]
[mm]a \cdot b= a \cdot b \rightarrow a \cdot b = a \cdot b \cdot 1 = a \cdot b \cdot a = 1 \cdot b \cdot a = b \cdot a[/mm]


Dazu muss man sagen das Lösung. 2 die eines Komilitonen ist, der meinte meine 1. Lösung sei falsch... womit mit er mich völlig verwirrt hat.
Ich wäre für Antworten sehr dankbar.

MfG Axel


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Beweis Boolscher Ring: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Mo 19.11.2007
Autor: andreas

hi

> 1.
>  [mm]a \cdot a=a \Rightarrow (a+b)\cdot(a+b)=(a+b)[/mm]
>  [mm]a \cdot a + a \cdot b + b \cdot a + b \cdot b= (a+b)[/mm]
>  
> [mm]a + a \cdot b + b \cdot a + b = (a+b)[/mm]
>  [mm](a+b) + a \cdot b + b \cdot a = (a+b)[/mm]
>  
> [mm]a \cdot b + b \cdot a = 0[/mm]
>  [mm]a \cdot b + a \cdot b + b \cdot a = a \cdot b[/mm]
>  
> [mm]\Rightarrow b \cdot a = a \cdot b[/mm]
>  
> Zum letzten Schritt muss man sagen, dass ich a+a=0 bereits
> eine Aufgabe vorher bewiesen habe.

dieser beweis ist meiner meinung nach völlig korrekt.


> 2.
>  
> dazu muss man sagen das ich davon nicht sehr überzeugt
> bin...
>  
> [mm]a \cdot 1 = a[/mm]
>  [mm]a \cdot a = a[/mm]
>  [mm]\rightarrow a=1[/mm]

warum sollte das denn gelten? $a$ muss im allgemeinen nicht invertierbar sein. damit wäre ja auch gezeigt, dass der ring nur $0$ und $1$ enthalten würde, was aber im allgemeinen nicht der fall ist.


> Dazu muss man sagen das Lösung. 2 die eines Komilitonen
> ist, der meinte meine 1. Lösung sei falsch... womit mit er
> mich völlig verwirrt hat.

aus welchem grund meinte denn dein komilitone, dass deine lösung falsch wäre?


grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]