matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikBeweis Binominalkoeffizienten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Stochastik" - Beweis Binominalkoeffizienten
Beweis Binominalkoeffizienten < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Binominalkoeffizienten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:04 Di 22.11.2005
Autor: Icyangel

hi an alle!

ich bräuchte für die nächste matheklausur mal den beweis für den symmetrie-satz der binomialkoeffizienten, den für die additivität habe ich schon, aber den anderen kann ich im internet nicht finden. weiss vielleicht jmd, wo man den im netz finden könnte oder hat ihn jmd zufällig? hab echt schon zwei stunden gesucht grade im internet. es geht um folgende beweise für:

n über k = n über (n - k)

und

n über k =( n-1) über (k - 1) +( n + 1) über (k + 1)

wäre so toll, wenn mir jmd helfen könnte bitte, die klausur ist sehr wichtig für mich, muss da unbedingt gut schreiben!

selbst herzuleiten traue ich mich nicht, ich darf da ja keine fehler drinn haben, sonst habe ich die auch in meiner klausur drinne!

vielen lieben dank schon einmal im voraus!

liebe grüße

verena

        
Bezug
Beweis Binominalkoeffizienten: Definition anwenden
Status: (Antwort) fertig Status 
Datum: 14:41 Di 22.11.2005
Autor: Roadrunner

Hallo Verena!


Etwas mehr Selbstbewusstsein, bitte ;-) ...
Klar kannst Du das auch mit dem Selbstherleiten!


Wende einfach mal die Definition des Binomialkoeffizienten an:

[mm] $\vektor{n\\k} [/mm] \ := \ [mm] \bruch{n!}{k!*(n-k)!} [/mm] \ = \ [mm] \bruch{n!}{(n-k)!*k!} [/mm] \ = \ [mm] \bruch{n!}{(n-k)!*[n-(n-k)]!} [/mm] \ = \ [mm] \vektor{n\\n-k}$ [/mm] [ok]


Bei der zweiten Aufgabe auch die Definition auf die beiden einzelnen Binomialkoeffizienten anwenden und die beiden Brüche zusammenfassen.

Du kannst Dein Ergebnis ja gerne hier posten zur Kontrolle.


Gruß vom
Roadrunner


Bezug
                
Bezug
Beweis Binominalkoeffizienten: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:22 Di 22.11.2005
Autor: Icyangel

hi du;)

erstmal danke für deine antwort. war das denn jetzt schon die lösung für den ersten beweis, tut mir leid, ich kann das gar nicht;( wenn ich schon beweis höre, schaltet mein gehirn ab.

deshalb hätte ich ja gerne die beweise gehabt, damit ich sie mir dann daraus erschließen kann, aber selbst kommt ich niemals drauf, ich kann einfach kein mathe;( und ich weiss, dass mein mathelehrer in der klausur am donnerstag 100% einen von denen dran nehmen wird, und wenn ich die dann schon könnte, das wäre so toll!

wär lieb, wenn du dich nochmal melden würdest!

liebe grüße

verena

Bezug
                        
Bezug
Beweis Binominalkoeffizienten: Aufgabe 1 fertig
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Di 22.11.2005
Autor: Roadrunner

Hallo Verena!


Ja, die erste Aufgabe ist damit vollständig gelöst.


Hast Du denn die zweite Aufgabe mal versucht, indem Du auf die beiden Binomialkoeffizenten auf der rechten Seite die jeweilige Definition angewendet hast?


Gruß vom
Roadrunner


Bezug
                                
Bezug
Beweis Binominalkoeffizienten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 Di 22.11.2005
Autor: Icyangel

hhm, komme mir jetzt total doof vor, aber ich hab nicht mal eine idee, wie ich das anfangen sollte! bitte, kannst du es mir nicht sagen, wie es geht? ich bin nicht zu faul, es selbst zu machen;), ich bin nur wirklich so verzweifelt! ich schau die aufgabe an und versteh einfach gar nix ;(

Bezug
                                        
Bezug
Beweis Binominalkoeffizienten: erste Schritte ...
Status: (Antwort) fertig Status 
Datum: 17:58 Di 22.11.2005
Autor: Roadrunner

Hallo Verena!


Na, dann mal die ersten Schritte und ein Tipp:


[mm] $\vektor{n-1\\k-1} [/mm] + [mm] \vektor{n+1\\k+1} [/mm] \ = \ [mm] \bruch{(n-1)!}{(k-1)!*[(n-1)-(k-1)]!} [/mm] + [mm] \bruch{(n+1)!}{(k+1)!*[(n+1)-(k+1)]!} [/mm] \ = \ [mm] \bruch{(n-1)!}{(k-1)!*(n-k)!} [/mm] + [mm] \bruch{(n+1)!}{(k+1)!*(n-k)!} [/mm] \ = \ ...$


Nun diese beiden Brüche gleichnamig machen, indem man auch die Definition der Fakultät benutzt:

$m! \ := \ 1*2*3*...*(m-1)*m$

Damit gilt auch: $(m+1)! \ = \ m!*(m+1)$


Gruß vom
Roadrunner


Bezug
                                                
Bezug
Beweis Binominalkoeffizienten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Mi 23.11.2005
Autor: Icyangel

also, du hast irgendwie anders angefangen, die aufgabe war ja (ich weiss leider nicht, wie man das in die klammern hier schreiben kann):

n über k = (n-1) über (k-1) + (n-1) über k

mein bruder hat mir jetzt ein wenig geholfen, aber wir stecken jetzt an einem punkt fest, ich schreibe mal die lezten drei schritte auf:

= k*(n-1)! + (n-1)! : k* (k-1)! * (n-k)!
= (n-1)! * (k+1) : k * (k-1)! * (n-k)!
= (n-1)! * (k+1) : k! * (n-k)!

jetzt weiss ich nicht mehr weiter! kannst du mir vielleicht helfen?

liebe grüße

verena



Bezug
                                                        
Bezug
Beweis Binominalkoeffizienten: andere Aufgabe?
Status: (Antwort) fertig Status 
Datum: 21:54 Mi 23.11.2005
Autor: Roadrunner

Hallo Verena!


Da hast Du mich aber doch etwas reingelegt ... [kopfschuettel]

In Deinem ersten Post lautete diese Aufgabe etwas anders!


\vektor{n\\k} erzeugt ein schönes [mm] $\vektor{n\\k}$ [/mm]
(siehe auch bei den Eingabehilfen unter dem Edit-Fenster, oder unserem Formeleditor)

Deine Rechnungen kann ich leider nicht richtig entziffern ...


Ich beginne wieder rechts ...

[mm] $\vektor{n-1\\k-1} [/mm] + [mm] \vektor{n-1\\k}$ [/mm]

$= \ [mm] \bruch{(n-1)!}{(k-1)!*[(n-1)-(k-1)]!} [/mm] + [mm] \bruch{(n-1)!}{k!*[(n-1)-k]!}$ [/mm]

$= \ [mm] \bruch{(n-1)!}{(k-1)!*(n-k)!} [/mm] + [mm] \bruch{(n-1)!}{k!*(n-k-1)!}$ [/mm]

$= \ [mm] \bruch{\blue{k}*(n-1)!}{\blue{k}*(k-1)!*(n-k)!} [/mm] + [mm] \bruch{(n-1)!*\red{(n-k)}}{k!*(n-k-1)!*\red{(n-k)}}$ [/mm]

$= \ [mm] \bruch{k*(n-1)!}{\blue{k!}*(n-k)!} [/mm] + [mm] \bruch{(n-1)!*(n-k)}{k!*\red{(n-k)!}}$ [/mm]

$= \ [mm] \bruch{k*(n-1)!+(n-k)*(n-1)!}{k!*(n-k)!}$ [/mm]


Wenn Du jetzt im Zähler $(n-1)!_$ ausklammerst und zusammenfasst, bist Du endlich am Ziel ...


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]