matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenBeweis Betrag von
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - Beweis Betrag von
Beweis Betrag von < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis Betrag von: Beweis Betrag Falluntersch.?
Status: (Frage) beantwortet Status 
Datum: 17:00 Mi 12.11.2008
Autor: mathenully

Aufgabe
Zeigen Sie, dass für n ∈ N und a1, . . . , an, b1, . . . , bn ∈ R gilt:
(|a1b1| + . . . + [mm] |anbn|)^2 <=(a1^2+...+an^2)(b1^2+...bn^2) [/mm]

(Die Existenz der Wurzel √x für x ∈ R, x ≥ 0 kann vorausgesetzt werden.)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hi,

ich hab Probrobleme bei oben stehender Aufgabe, wäre super, wenn Ihr mir helfen könntet!

Ich bekomme keinen richtigen Ansatz hin, da ich momentan bei Ana gar nichts mehr verstehe!

Mein Ansatz wäre eine Fallunterscheidung.

1. Betrag größer 0  2. Betrag kleiner 0

Hab aber keine Ahnung wie das umzusetzen wäre!

Wenn mir jemand helden kann, dann bitte ausfürhliche Erklärungen, da ich sonst nichts auf die Reihe bringe!

Danke

        
Bezug
Beweis Betrag von: Antwort
Status: (Antwort) fertig Status 
Datum: 02:14 Fr 14.11.2008
Autor: rainerS

Hallo!

> Zeigen Sie, dass für n ∈ N und a1, . . . , an, b1, .
> . . , bn ∈ R gilt:
>  (|a1b1| + . . . + [mm]|anbn|)^2 <=(a1^2+...+an^2)(b1^2+...bn^2)[/mm]
>  
> (Die Existenz der Wurzel √x für x ∈ R, x
> ≥ 0 kann vorausgesetzt werden.)
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hi,
>  
> ich hab Probrobleme bei oben stehender Aufgabe, wäre super,
> wenn Ihr mir helfen könntet!
>  
> Ich bekomme keinen richtigen Ansatz hin, da ich momentan
> bei Ana gar nichts mehr verstehe!
>  
> Mein Ansatz wäre eine Fallunterscheidung.
>  
> 1. Betrag größer 0  2. Betrag kleiner 0

Das versteh ich nicht. Die Betragsfunktion ist nie kleiner als 0.

Ich würde den Beweis per vollständiger Induktion führen. Der Anfang n=1 ist offensichtlich, und für den Induktionsschritt benutzt du $2|x||y| [mm] \le x^2+y^2$. [/mm] Wie, siehst du, wenn du versuchst, die Ungleichung für n=2 herzuleiten.

  Viele Grüße
    Rainer



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]