matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenBeweis: Basis von R(2x2)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Beweis: Basis von R(2x2)
Beweis: Basis von R(2x2) < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis: Basis von R(2x2): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 Sa 18.09.2010
Autor: lemur

Aufgabe
Zeige, dass die Menge
B =  [mm] \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} [/mm] , [mm] \begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} [/mm] , [mm] \begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} [/mm]
eine Basis von  [mm] \IR^{2x2}\ [/mm] ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dabei gilt es zu beweisen, dass die Matrizen sowohl linear unabhängig als auch Erzeugendensystem sind.

Die lineare unabghängigkeit habe ich so bewiesen:

[mm] a\begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, b\begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix} [/mm] , [mm] c\begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix} [/mm] , [mm] d\begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix} [/mm] = 0

gilt eben nur, wenn a=b=c=d = 0 ist.

Dafür habe ich die Matrizen in eine Vektorform gebracht

[mm] \begin{pmatrix} a+2b-d \\ 2a-b+c \\ b-c+2d \\ -a + 2c + d \end{pmatrix} [/mm]  

nach 0 aufgelöst und herausgefunden, dass dies eben nur gilt wenn a=b=c=d = 0 ist. Also sind die Matrizen lin. unabhängig.

Weitergehend gilt es dann noch zu beweisen, dass sie Erzeugendensystem sind.

Allerdings weiß ich da nicht so genau wie ich ansetzen soll, ich hab mir schon überlegt, dass dabei ja jeder beliebige 4-Tupel erzeugt werden kann, also müsste auch gelten:


[mm] \begin{pmatrix} a+2b-d \\ 2a-b+c \\ b-c+2d \\ -a + 2c + d \end{pmatrix} [/mm]   = [mm] \begin{pmatrix} x1 \\ x2 \\ x3 \\ x4 \end{pmatrix} [/mm]  

Wenn ich das dann aber auflöse komm ich auf Ergebnisse von denen ich nicht weiß wie ich sie verwerten soll.

(z.B 8d = x2 + 3x3 + x4)

Wär nett wenn mir jemand sagen könnte wie ich denn beweise, dass es ein Erzeugendensystem ist.

Viele Grüße und danke schonmal

        
Bezug
Beweis: Basis von R(2x2): Antwort
Status: (Antwort) fertig Status 
Datum: 14:27 Sa 18.09.2010
Autor: XPatrickX

Hallo,

> Zeige, dass die Menge
>  B =  [mm]\begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}[/mm]
> , [mm]\begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}[/mm] , [mm]\begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix}[/mm]
> eine Basis von  [mm]\IR^{2x2}\[/mm] ist.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Dabei gilt es zu beweisen, dass die Matrizen sowohl linear
> unabhängig als auch Erzeugendensystem sind.
>
> Die lineare unabghängigkeit habe ich so bewiesen:
>  
> [mm]a\begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}, b\begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}[/mm]
> , [mm]c\begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}[/mm] , [mm]d\begin{pmatrix} -1 & 0 \\ 2 & 1 \end{pmatrix}[/mm] = 0
>  

Statt den Kommas, sollen das sicherlich Plus-Zeichen sein.

> gilt eben nur, wenn a=b=c=d = 0 ist.
>  
> Dafür habe ich die Matrizen in eine Vektorform gebracht
>
> [mm]\begin{pmatrix} a+2b-d \\ 2a-b+c \\ b-c+2d \\ -a + 2c + d \end{pmatrix}[/mm]
>  
>
> nach 0 aufgelöst und herausgefunden, dass dies eben nur
> gilt wenn a=b=c=d = 0 ist. Also sind die Matrizen lin.
> unabhängig.
>

Ok, das Prinzip ist auf jeden Fall korrekt.
Da du keine Rechnung gepostet hast, kann ich diese auch nicht kontrollieren.

> Weitergehend gilt es dann noch zu beweisen, dass sie
> Erzeugendensystem sind.
>  
> Allerdings weiß ich da nicht so genau wie ich ansetzen
> soll, ich hab mir schon überlegt, dass dabei ja jeder
> beliebige 4-Tupel erzeugt werden kann, also müsste auch
> gelten:
>  
>
> [mm]\begin{pmatrix} a+2b-d \\ 2a-b+c \\ b-c+2d \\ -a + 2c + d \end{pmatrix}[/mm]
>   = [mm]\begin{pmatrix} x1 \\ x2 \\ x3 \\ x4 \end{pmatrix}[/mm]  

Ja, du musst nachweisen, dass du jede beliebige Matrix [mm] \pmat{ x_1 & x_2 \\ x_3 & x_4 } [/mm] durch linearkombiantion deiner 4 Matrizen darstellen kannst. Der Ansatz ist also korrekt.

>
> Wenn ich das dann aber auflöse komm ich auf Ergebnisse von
> denen ich nicht weiß wie ich sie verwerten soll.
>
> (z.B 8d = x2 + 3x3 + x4)
>  

Na, du musst hier nach a,b,c und d auflösen. Denn dann weißt du für beliebige Einträge [mm] x_1-x_4 [/mm] die Werte der Skalare a-d für die Darstellung durch Linearkombination.

Gruß Patrick

> Wär nett wenn mir jemand sagen könnte wie ich denn
> beweise, dass es ein Erzeugendensystem ist.
>  
> Viele Grüße und danke schonmal


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]