matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Beweis
Beweis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis: Orthonormalbasis - Richt.cos
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 12:44 Sa 04.06.2005
Autor: slash

ich habe diese frage nur hier gestellt.

hallo,
ich habe da einen hübschen, kleinen beweis zu führen, weiß aber nicht so recht wie.
V sei  [mm] \IR^n [/mm] mit dem kanonischen skalarprodukt.
[mm] e_{i} [/mm] ist der i-te spaltenvektor der einheitsmatrix. dann ist [mm] {e_{1}, ..., e_{n} } [/mm] die natürliche Orthonormalbasis von V.
für einen beliebigen von null verschiedenen vektor x =(x1, ..., xn) sei  [mm] \alpha [/mm] der von  [mm] e_{i} [/mm] und x eingeschlosssene winkel.
der kosinus von  [mm] \alpha_{i} [/mm] wird als der i-te richtungskosinus von x bezeichnet.
man beweise:

[mm] \summe_{i=1}^{n}cos^2 \alpha_{i} [/mm] =1

.. und ich komme nicht so recht weiter.
ich habe versucht, es über die def des cos zu lösen, hatte aber eher weniger erfolg.
vielen dank im voraus.
slash

        
Bezug
Beweis: Tip
Status: (Antwort) fertig Status 
Datum: 15:35 Sa 04.06.2005
Autor: angela.h.b.


>
>  V sei  [mm]\IR^n[/mm] mit dem kanonischen skalarprodukt.
>  [mm]e_{i}[/mm] ist der i-te spaltenvektor der einheitsmatrix. dann
> ist [mm]{e_{1}, ..., e_{n} }[/mm] die natürliche Orthonormalbasis
> von V.
>  für einen beliebigen von null verschiedenen vektor x =(x1,
> ..., xn) sei  [mm]\alpha[/mm] der von  [mm]e_{i}[/mm] und x eingeschlosssene
> winkel.

Hallo slash,

gewiß ist gemeint:  [mm] \alpha_{i} [/mm] ist der von x und [mm] e_{i} [/mm] eingeschlossene Winkel...
Überleg' Dir mal, was das Skalarprodukt  [mm] x*e_{i} [/mm] ergibt: Du hast ja einerseits die Definition des Skalarproduktes,  [mm] x*e_{i}= |x|*|e_{i}|*cos\alpha_{i}, [/mm] andererseits die Koordinatenform.
Na, hilft's? Schaffst Du's jetzt?

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]