matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraBeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - Beweis
Beweis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis: Komplexe Zahlen
Status: (Frage) beantwortet Status 
Datum: 16:54 Di 19.04.2005
Autor: Griesig

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo zusammen!

Folgende Aufgabe soll ich lösen, komme aber einfach nicht weiter!

Sei [mm] v \in V(C) [/mm] ein Vektor mit v orthogonal zu seinem konjugiert komplexen v' (bzgl. dem Standardskalarprodukt). Seien v1=Re(v) und v2=Im(v).Man zeige:

a) [mm] \begin {Vmatrix} v' \end{Vmatrix} ^2 = \begin {Vmatrix} v \end{Vmatrix} ^2 [/mm]

b) v1 orthogonal zu v2

c) [mm] \begin {Vmatrix} v1 \end{Vmatrix} ^2 = \begin {Vmatrix} v2 \end{Vmatrix} ^2 = \bruch { \begin{Vmatrix} v \end {Vmatrix} ^2 }{2} [/mm]

Ich habe diese Frage nirgenswo sonst gestellt. Könnt ihr mir vielleicht helfen? Die a ist einfach, die habe ich!

Aber beim Rest habe ich keine Ahnung! Hilfe!



        
Bezug
Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:52 Di 19.04.2005
Autor: Marcel

Hallo!

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hallo zusammen!
>  
> Folgende Aufgabe soll ich lösen, komme aber einfach nicht
> weiter!
>  
> Sei [mm]v \in V(C)[/mm] ein Vektor mit v orthogonal zu seinem
> konjugiert komplexen v' (bzgl. dem Standardskalarprodukt).
> Seien v1=Re(v) und v2=Im(v).

Ich nehme an, dass mit $V(C)$ der "Vektorraum der komplexen Zahlen" gemeint ist (andernfalls solltest du erläutern, was damit gemeint ist; kann sein, dass das Folgende dann leider komplett falsch ist; aber wenn du nichts dazu schreibst, bleibt mir nur, zu raten...). Davon gehe ich im Folgenden jedenfalls aus. Das heißt ja dann, dass vorausgesetzt ist: Für $v [mm] \in [/mm] V(C)$ gilt:
[mm] $v=\vektor{r\\s}$ [/mm] (mit $r,s [mm] \in \IR$), $v'=\vektor{r\\-s}$ [/mm] und es gilt:
[mm](\star)[/mm] $v [mm] \* v'=r^2-s^2=0$, [/mm] wobei [mm] $\*$ [/mm] für das Standard-Skalarprodukt (in [mm] $\IR^2 \cong [/mm] V(C)$) stehe.

> Man zeige:
>  
> a) [mm]\begin {Vmatrix} v' \end{Vmatrix} ^2 = \begin {Vmatrix} v \end{Vmatrix} ^2[/mm]

Hier nehme ich an, dass ihr für [mm] $v=\vektor{r\\s} \in [/mm] V(C)$, [m]v_1=\vektor{r\\0}[/m], [mm] $v_2=\vektor{0\\s}$, [/mm] $r,s [mm] \in \IR$ [/mm] definiert habt:
[mm] $||v||:=\wurzel{v \*v}=\wurzel{r^2+s^2}$. [/mm]

Damit folgt dann:
[mm]||v||^2=r^2+s^2=r^2+(-1)^2 *s^2=r^2+(-s)^2=||v'||^2[/mm]
  

> b) v1 orthogonal zu v2

Naja, irgendwie verwirrt mich eure Notation etwas (was sie auch schon oben getan hat). Offenbar werden bei euch [mm] $\mbox{Re}(v)$ [/mm] bzw. [mm] $\mbox{Im}(v)$ [/mm] als Vektoren aufgefasst. Naja, ich bleibe dann dabei:
Ist [mm] $v=\vektor{r\\s} \in [/mm] V(C)$ ($r,s [mm] \in \IR$), [/mm] so sei [mm] $\mbox{Re}(v)=\vektor{r\\0}$,[/mm]  [mm]\mbox{Im}(v)=\vektor{0\\s}[/mm]. Und nun berechnest du halt:
[mm]v_1 \* v_2=\mbox{Re}(v) \* \mbox{Im}(v) =\vektor{r\\0} \* \vektor{0\\s}[/mm] und zeigst, dass da $0$ herauskommt!
  

> c) [mm]\begin {Vmatrix} v1 \end{Vmatrix} ^2 = \begin {Vmatrix} v2 \end{Vmatrix} ^2 = \bruch { \begin{Vmatrix} v \end {Vmatrix} ^2 }{2}[/mm]

Auch das ist nicht so schwer:
Wegen der Voraussetzung der Orthogonalität des Vektors [mm] $v=\vektor{r\\s}=v_1+v_2$ [/mm] zu seinem konj. komplexen gilt ja (siehe [mm] $(\star)$): [/mm]
[mm] $(\star_2)$ $r^2=s^2$. [/mm]
Also:
[mm] $||v_1||^2=r^2+0^2=r^2$, [/mm]
[mm] $||v_2||^2=0^2+s^2\stackrel{(\star_2)}{=}r^2$ [/mm] und:
[mm] $||v||^2=r^2+s^2\stackrel{(\star_2)}{=}2r^2$. [/mm]

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]