matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisBeweis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Beweis
Beweis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:40 So 10.10.2004
Autor: nitro1185

Hallo!!Kann viell. jemand kontrollieren ob das richtig ist??

Also: Beweise,dass für alle x,y [mm] \in [/mm] R folgendes gilt:

| |x| - |y| | [mm] \le [/mm] |x-y|   so ich bin folgendermaßen vorgegangen:

Habe versch. Fälle unterschieden

a.) x,y [mm] \ge [/mm] 0 => |x|=x   |y|=y  => |x-y| [mm] \le [/mm] |x-y| => wahre Aussage

b.) x,y [mm] \le [/mm] 0  => |-x|=x   |-y|=y   => |x-y| [mm] \le [/mm] |-x+y| => x [mm] \le [/mm] y

Das kommt mir ein bisschen komisch vor,denn dann würde es für x,y [mm] \le [/mm] 0 nur gelten,wenn x [mm] \le [/mm] y!!Stimmt aber nicht!!!

c.) x [mm] \ge [/mm] 0 und y [mm] \le [/mm] 0 => |x-y| [mm] \le [/mm] |x+y| => -y [mm] \le [/mm] y wahre Aussage

d.) y [mm] \ge [/mm] 0 und x [mm] \le [/mm] 0 => |x-y| [mm] \le [/mm] |-x-y| => -y [mm] \le [/mm] y whre Aussage

Kann mich jemand bitte "kritisieren" oder ausbessern?

Mfg daniel



        
Bezug
Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 So 10.10.2004
Autor: Gnometech

Grüße!

Der Ansatz ist nicht schlecht, mit Fallunterscheidung geht es - aber nicht so, wie Du es versuchst, leider.

Schauen wir uns Fall 1 an:

$x,y [mm] \leq [/mm] 0$. Wenn wir das zugrundelegen, dann gilt ganz richtig: $|x| = x$ und auch $|y| = y$, da beide Werte positiv sind.

Aber was ist mit $|x-y|$? Man kann nämlich NICHT auflösen: $|x - y| = |x| - |y|$!!

Statt dessen hängt der Wert des Ausdrucks davon ab, ob $x [mm] \leq [/mm] y$ ist oder nicht - denn für $x = 2$ und $y = 7$ (beide positiv!) ist $x - y = 2 - 7 = -5$ negativ!

Versuch beim Beweis also so vorzugehen: Unterscheide die Fälle, die für $x$ und $y$ auftreten können (positiv oder negativ) und mach dann jeweils eine kleine Fallunterscheidung, was mit der Differenz $x - y$ ist - dann kommst Du zum Ziel.

Lars


Bezug
        
Bezug
Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 03:23 Di 12.10.2004
Autor: WebFritzi

Am einfachsten geht's mit der Dreiecksungleichung:

[mm]|x| = |(x - y) + y| \le |x-y| + |y|[/mm]. Daraus folgt [mm]|x| - |y| \le |x-y|[/mm]. Durch Vertauschen von x und y folgt die Behauptung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]