Bewegungsgleichungslösungen < Mechanik < Physik < Naturwiss. < Vorhilfe
|
Aufgabe | Hier geht es um ein ein-dimensionales Partikel mit Masse m>0 in einem harmonischen Oszillator mit Potentialfunktion [mm] V:\IR->\IR, V(q)=1/2kq^{2}, [/mm] wo k>0 eine Konstante ist. Hiermit wird die Lagrangefunktion
[mm] L(q,v)=1/2mv^{2}-1/2kq^{2}
[/mm]
(a) Bestimme ale Lösungen, [mm] \gamma(t), [/mm] zur Bewegungsgleichung mit [mm] \gamma(0)=0.
[/mm]
(b) Zeigt, dass alle diese Lösungen erfüllt [mm] \gamma(\pi \wurzel{m/k})=0
[/mm]
(c) Konkludiert, dass die Bewegungsgleichung mit den Randwerten [mm] \gamma(0)=0 [/mm] und [mm] \gamma(\pi\wurzel{m/k})=0 [/mm] unendlich viele Lösungen hat. Zeigt, dass alle diese Lösungen erfüllen, dass die Wirkung [mm] W^{L}(\gamma)=0 [/mm]
(d) Konkludiert, dass die Bewegungsgleichung mit den Randwerten [mm] \gamma(0)=0 [/mm] und [mm] \gamma(\pi\wurzel{m/k})=x [/mm] keine Lösungen hat für [mm] x\in\IR-\{0\}
[/mm]
(e) Zeigt, dass die Bewegungsgleichung mit Randwerten [mm] \gamma(0)=0 [/mm] und [mm] \gamma(T)=0 [/mm] genau eine Lösung hat für [mm] T\not\in\{n\pi\wurzel{m/k} | n\in \IN\} [/mm] und dass diese Lösung auch erfüllt [mm] W^{L}(\gamma)=0
[/mm]
(f) Beweist, dass man eine [mm] C^{1} [/mm] Funktion [mm] \gamma:[0,T]->\IR [/mm] finden kann mit [mm] \gamma(0)=0 [/mm] und [mm] \gamma(T)=0 [/mm] so dass die entsprechende Wirkung [mm] W^{L}(\gamma)<0, [/mm] wenn die Konstant k>0 genügend gross ist.
(g) Zeigt, dass für alle T>0 und k>0 kann man eine [mm] C^{1} [/mm] Funktion finden [mm] \gamma:[0,T]->\IR [/mm] mit [mm] \gamma(0)=0 [/mm] und [mm] \gamma(T)=0 [/mm] so dass die entsprechende Wirkung [mm] W^{L}(\gamma)>0
[/mm]
(h) Konkludiert, dass es Werte von T>0 und k>0 gibt so dass die Lösungen der Bewegungsgleichung mit Randwerten [mm] \gamma(0)=0 [/mm] und [mm] \gamma(T)=0 [/mm] weder ein Minimierer noch Maximierer der Wirkung [mm] W^{L} [/mm] ist auf der Menge [mm] C^{1}_{(0,0)}([0,T],\IR). [/mm] |
Hat jemand bitte eine Idee zu dieser Aufgabe?
Ich habe nur Schwierigkeiten mit (f) bis (h).
Die generelle Lösung zur Bewegungsgleichung ist [mm] \gamma(t)=b*sin(\wurzel{k/m}*t).
[/mm]
In (f) habe ich gewählt: [mm] \gamma(t)=sin(\pi/T*t) [/mm] und in (g) [mm] \gamma(t)=sin(n\pi/T*t) [/mm] so dass die Ungleichungen erfüllt sind für passendes k in (f) und n in (g), wäre das richtig?
Aber dann versteh ich nicht die Aufgabe (h) genau, was muss ich da machen?
Also ich weiss dass: [mm] \gamma [/mm] Extremalstelle für [mm] W^{L} \gdw \gamma [/mm] löst Bewegungsgleichung. D.h. dass ein Minimierer oder Maximierer die Bewegungsgleichung lösen muss, aber das Umgekehrte ist nicht immer der Fall. Hat es vielleicht was damit zu tun?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:20 Mo 15.12.2008 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|