matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikBewegung Elektron
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "HochschulPhysik" - Bewegung Elektron
Bewegung Elektron < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bewegung Elektron: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 Sa 23.10.2010
Autor: Unk

Aufgabe
Man berechen die Bewegung eines Elektrons unter dem Einfluss eines oszillierenden elektrischen Feldes in [mm] x-\mbox{Richtung} E_{x}(t)=E_{0}\cos(\omega t+\theta), \vec{F}(t)=-e\vec{E}(t). [/mm] Anfangsbedingungen [mm] \vec{x}(0)=\vec{v}(0)=0. [/mm]

Hallo,

ich bin wieder etwas raus aus dem Stoff, deshalb diese (einfache) Aufgabe. Kraft hat doch die Form: [mm] m\ddot{\vec{x}}=\vec{F}(t). [/mm] Damit käme ich dann eben zu der DGL in [mm] x-\mbox{Richtung} m\ddot{x}=-eE_{0}\cos(\omega t+\theta) [/mm] (und [mm] m\ddot{y}=m\ddot{z}=0). [/mm] Ist dieser Ansatz richtig?

Wenn ich das dann ausrechne, komme ich zu [mm] \vec{x}(t)=\begin{pmatrix}\frac{eE_{0}}{m\omega}(\cos(\omega t+\theta)+\sin(\theta)t+-\cos(\theta)\\ 0\\ 0\end{pmatrix}. [/mm]

Grüße
Unk

        
Bezug
Bewegung Elektron: Antwort
Status: (Antwort) fertig Status 
Datum: 20:53 Sa 23.10.2010
Autor: leduart

Hallo
beihnahe richtig.

es fehlt [mm] \omega^2 [/mm] im Nenner , dann entsprechend bei [mm] t*sin(\phi) [/mm] ein [mm] \omega [/mm] als Faktor.
soll das klassisch gerechnet werden, oder QM?
klssisch ists r
Gruss leduart


Bezug
                
Bezug
Bewegung Elektron: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:39 So 24.10.2010
Autor: Unk


> Hallo
>  beihnahe richtig.
>  
> es fehlt [mm]\omega^2[/mm] im Nenner , dann entsprechend bei
> [mm]t*sin(\phi)[/mm] ein [mm]\omega[/mm] als Faktor.
>  soll das klassisch gerechnet werden, oder QM?
>  klssisch ists r
>  Gruss leduart
>  

Jo danke, dass eine [mm] \omega [/mm] ist mir auf dem Weg verloren gegangen. Sollte klassisch sein, aber rein interessehalber, wie wäre denn der Ansatz für die Kraft, wenn ich das quantemechanisch rechnen wollte?

Bezug
                        
Bezug
Bewegung Elektron: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 So 24.10.2010
Autor: leduart

Hallo
Das ist nicht so einfach! Nicht mit nem Newtonschen Kraftansatz, sondern mit nem Hamiltonoperator, aber das zu überlegen hab ich grad weder Zeit noch Lust
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]