Bew: Regeln für lim sup o. inf < Analysis < Hochschule < Mathe < Vorhilfe
|
Hallo. Man soll beweisen, oder widerlegen, dass
1. lim sup (an + bn) <= lim sup an + lim sup bn
2. wie 1. mit lim inf
Habe die Aufgabe in vielen Büchern gefunden aber keinen Beweis oder Lösungsansatz gefunden.
Wer kann helfen?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:51 Di 16.11.2004 | Autor: | Astrid |
Hallo!
> Hallo. Man soll beweisen, oder widerlegen, dass
> 1. lim sup (an + bn) <= lim sup an + lim sup bn
> 2. wie 1. mit lim inf
>
> Habe die Aufgabe in vielen Büchern gefunden aber keinen
> Beweis oder Lösungsansatz gefunden.
>
Was ist denn mit eigenen Lösungsansätzen?
Schreibe dir doch einfach mal die Definition des lim sup für beide Seiten der Ungleichung aus und versuche, die eine Seite in die andere zu überführen.
Wo liegt denn dann genau dein Problem?
Viele Grüße
Astrid
|
|
|
|
|
Also die Definition habe ich mir ja schon angeschaut. Das wäre dann lim (sup {ak : k>=n}) bzw. ist der größte Häufungswert einer beschränkten Folge. Wie kann ich denn jetzt daraus zeigen, dass es egal ist ob ich die beiden Folgen innerhalb der Klammer oder getrennt schreibe?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 01:16 Fr 19.11.2004 | Autor: | Marcel |
Hallo Antiprofi (das werden wir aber noch ändern müssen: Du sollst ja schließlich mal ein Profi werden ),
die Antwort von Maria könnte fast richtig sein, wenn ich denn wüßte, wann bei ihr ein Minus steht und wann ein Plus steht (und noch sonst einige andere Dinge diesbezüglich. )
Schreiben wir es formal mal sauber auf:
Sei [mm] $\varepsilon [/mm] > 0$ gegeben und sei [m]a:=\limsup_{n \to \infty}{a_n}[/m], [m]b:=\limsup_{n \to \infty}{b_n}[/m].
Nach Satz 5.20 a) (S. 44f., skriptinterne Zählung) existiert ein [mm] $N^{(1)}_\varepsilon \in \IN$, [/mm] so dass für alle [m]n \ge N^{(1)}_\varepsilon[/m] gilt:
(I) [mm] $a_n< a+\frac{\varepsilon}{2}$
[/mm]
Ebenso existiert ein [mm] $N^{(2)}_\varepsilon \in \IN$, [/mm] so dass für alle [m]n \ge N^{(2)}_\varepsilon[/m] gilt:
(II) [mm] $b_n< b+\frac{\varepsilon}{2}$
[/mm]
Aus (I) und (II) folgt, dass für alle [m]n \ge max\{N^{(1)}_\varepsilon;\,N^{(2)}_\varepsilon\}[/m] gilt:
[mm] $(\star)$[/mm] [m]a_n+b_n\le a+\frac{\varepsilon}{2}+b+\frac{\varepsilon}{2}=(a+b)+\varepsilon[/m]
Da [mm] $\varepsilon [/mm] > 0$ beliebig war, folgt:
[m]\limsup_{n \to \infty}{\left(a_n+b_n\right)} \le (a+b)=\limsup_{n \to \infty}{a_n}+\limsup_{n \to \infty}{b_n}[/m]
(Der letzte Satz ist eigentlich die einzige schwere Einsicht!
Das überlegt man sich so:
Angenommen, es wäre
[mm] $(\star \star)$ $\limsup_{n \to \infty}{\left(a_n+b_n\right)} [/mm] > a+b$.
Dann definiere [m]\varepsilon:=\frac{\limsup_{n \to \infty}{\left(a_n+b_n\right)}}{2}- \frac{a+b}{2}[/m], und nach Annahme [mm] ($(\star \star)$) [/mm] ist dann [mm] $\varepsilon [/mm] > 0$.
Nach Satz 5.20 b) gibt es dann für alle $n [mm] \in \IN$ [/mm] ein $k [mm] \ge [/mm] n$, so dass:
[m]\left(a_k+b_k\right)> \limsup_{n \to \infty}{\left(a_n+b_n\right)}-\varepsilon[/m]
[m]=\frac{1}{2}*\limsup_{n \to \infty}{\left(a_n+b_n\right)}+\frac{1}{2}\left(a+b\right)=\left(a+b\right)+\underbrace{\frac{1}{2}*\limsup_{n \to \infty}{\left(a_n+b_n\right)}-\frac{1}{2}\left(a+b\right)}_{=\varepsilon>0}>(a+b)+\varepsilon[/m]
im Widerspruch zu [mm] $(\star)$.)
[/mm]
Viele Grüße,
Marcel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:17 Mi 17.11.2004 | Autor: | maria |
Ja, die Frage wurde bestimmt schon 100mal durchgesprochen, hast du bestimmt schon gesehen, oder? Ich habe zu der ersten Aufgabe noch einen weiteren Lösungsvorschlag:
Seien a=lim sup an, b=lim sup bn und [mm] \varepsilon>0
[/mm]
an [mm] \pm [/mm] bn [mm] \ge [/mm] a [mm] \pm [/mm] b [mm] \pm \varepsilon \Rightarrow an\ge a\pm (\varepsilon/2) [/mm] oder [mm] bn\ge b\pm (\varepsilon/2) \Rightarrow [/mm] nur für endlich viele Indizes n möglich [mm] \Rightarrow [/mm] also gilt lim [mm] sup(an\pm bn)\le [/mm] a [mm] \pm [/mm] b
Das geht bestimmt noch ausführlicher, aber ist hoffentlich richtig. Wenn nicht, dann korrigiert mich bitte, denn ich möchte hier keinen Mist reinschreiben und dann Schuld sein, wenn jemand wegen mir seine Übungsaufgaben versaut Noch ne Frage: Wie bekomme ich ein ordentliches plus hin (ohne minus)?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 02:52 Fr 19.11.2004 | Autor: | Marcel |
Hallo Maria,
> Ja, die Frage wurde bestimmt schon 100mal durchgesprochen,
> hast du bestimmt schon gesehen, oder? Ich habe zu der
> ersten Aufgabe noch einen weiteren Lösungsvorschlag:
>
> Seien a=lim sup an, b=lim sup bn und [mm]\varepsilon>0
[/mm]
>
> an [mm]\pm[/mm] bn [mm]\ge[/mm] a [mm]\pm[/mm] b [mm]\pm \varepsilon \Rightarrow an\ge a\pm (\varepsilon/2)[/mm]
> oder [mm]bn\ge b\pm (\varepsilon/2) \Rightarrow[/mm] nur für endlich
> viele Indizes n möglich [mm]\Rightarrow[/mm] also gilt lim
> [mm]sup(an\pm bn)\le[/mm] a [mm]\pm[/mm] b
Ich blicke da nicht so ganz durch. Meinst du mit [mm] $\pm$ [/mm] jedesmal ein $+$? Hast du da [mm] $\ge$ [/mm] geschrieben und [mm] $\le$ [/mm] gemeint? Willst du da irgendwie einen Widerspruch erzeugen?
Sorry, ich blicke da nicht wirklich durch...
Meine Lösung steht hier, falls sie dich interessieren sollte.
> Das geht bestimmt noch ausführlicher, aber ist hoffentlich
> richtig. Wenn nicht, dann korrigiert mich bitte, denn ich
> möchte hier keinen Mist reinschreiben und dann Schuld sein,
> wenn jemand wegen mir seine Übungsaufgaben versaut
Sollte jemand sich nicht auch Gedanken zu der angebotenen Lösung machen, und hat jemand dann nicht auch selbst mit Schuld daran, wenn er seine Übungsaufgabe versaut?
> Noch
> ne Frage: Wie bekomme ich ein ordentliches plus hin (ohne
> minus)?
Einfach die "+"-Taste auf deiner Tastatur benutzen.
Marcel
|
|
|
|