matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreBew Inklusion 2 Mengen v. Meng
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mengenlehre" - Bew Inklusion 2 Mengen v. Meng
Bew Inklusion 2 Mengen v. Meng < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bew Inklusion 2 Mengen v. Meng: Hilfe beim Beweis
Status: (Frage) beantwortet Status 
Datum: 22:43 Di 02.11.2010
Autor: froehli

Aufgabe
Gegeben seien zwei Mengen von Mengen M und N mit M [mm] \subseteq [/mm] N.
(1) [mm] \bigcup \mathcal{M} \subseteq \bigcup \mathcal{N} [/mm]
(2) [mm] \bigcap \mathcal{N} \subseteq \bigcup \mathcal{M} [/mm]

Lösung zur ersten.

Vorgabe: [mm] \mathcal{N}, \mathcal{M} [/mm] Mengen von mengen mit [mm] \mathcal{M} \subseteq \mathcal{N} [/mm]
Beweis: Sei a [mm] \in \bigcup \mathcal{M}. [/mm] Zu zeigen a \ in [mm] \bigcup \mathcal{N} [/mm]
Dann existiert T [mm] \in \mathcal{M} [/mm] mit a [mm] \in [/mm] T
Nach Vorgabe ist [mm] \mathcal{M} \subseteq \bigcup \mathcal{N} [/mm]

=> T [mm] \in \mathcal{N} [/mm]
=> T [mm] \subseteq \bigcup \mathcal{N} [/mm]
=> a [mm] \in \bigcup \mathcal{N} [/mm]
=> für alle a [mm] \in \bigcup \mathcal{M} [/mm] gilt [mm] a\in \bigcup \mathcal{N} [/mm]
=> [mm] \bigcup \mathcal{M} \subseteq \bigcup \mathcal{N} [/mm]


Will ich das nun Analog zu (2) umformen, so Fehlt es mir irgendwie an einem Verständnis für [mm] \bigcap [/mm] einer Menge von Mengen. Es ist auch der erste Beweis, den ich selbst schreibe.

        
Bezug
Bew Inklusion 2 Mengen v. Meng: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:50 Di 02.11.2010
Autor: froehli

Ich habe mir nun Gedanken zu einem Lösungsweg gemacht.

Vorgabe: [mm] \mathcal{N}, \mathcal{M} [/mm] Mengen von mengen mit [mm] \mathcal{M} \subseteq \mathcal{N} [/mm]
Beweis: Sei a [mm] \in \bigcap \mathcal{N}. [/mm] Zu zeigen a \ in [mm] \bigcap \mathcal{M} [/mm]
Dann existiert X [mm] \in \mathcal{M} [/mm] und T [mm] \in \mathcal{N} [/mm] mit a [mm] \in \mathcal{M} [/mm] und a [mm] \in \mathcal{T} [/mm]
Nach Vorgabe ist [mm] \mathcal{M} \subseteq \mathcal{N} [/mm]

=> T [mm] \in \mathcal{N} [/mm]
=> X [mm] \in \mathcal{N} [/mm]
=> T [mm] \subseteq \bigcap \mathcal{N} [/mm]
=> X [mm] \subseteq \bigcap \mathcal{N} [/mm]
=> a [mm] \in \bigcap \mathcal{N} [/mm]

=> für alle a [mm] \in \bigcap \mathcal{M} [/mm] gilt [mm] a\in \bigcap \mathcal{N} [/mm]
=> [mm] \bigcap \mathcal{M} \subseteq \bigcap \mathcal{N} [/mm]
=> [mm] \bigcap \mathcal{N} \subseteq \bigcap \mathcal{M} [/mm]


Sieht das richtig aus?

Bezug
                
Bezug
Bew Inklusion 2 Mengen v. Meng: Antwort
Status: (Antwort) fertig Status 
Datum: 09:33 Mi 03.11.2010
Autor: Schadowmaster

edit: so, Logik berichtigt, müsste jetzt so weit richtig sein:


zu aller erst mal soll laut deiner obigen Aufgabenstellung [mm] $\bigcap \mathcal{N} \subseteq \bigcup \mathcal{M}$ [/mm]
gelten, nicht $ [mm] \bigcap \mathcal{N} \subseteq \bigcap \mathcal{M} [/mm] $
Stellt sich jetzt natürlich die Frage bei welchem der beiden du dich vertippt hast.^^
Ich nehme mal an die Aufgabenstellung ist richtig, denn das (2) aus der Aufgabe lässt sich zeigen.

Du willst zeigen:

x [mm] $\in \bigcap \mathcal{N} \Rightarrow$ [/mm] x [mm] $\in \bigcup \mathcal{M}$ [/mm]

Das ist das gleiche wie:
x [mm] $\in$ [/mm] N [mm] $\forall$ [/mm] N [mm] $\in \mathcal{N} \Rightarrow \exists$ [/mm] M [mm] $\in \mathcal{M}$: [/mm] x [mm] $\in$ [/mm] M.

Da [mm] $\mathcal{M} \subseteq \mathcal{N}$ [/mm] muss ein x, dass in jeder Menge N [mm] $\in \mathcal{N}$ [/mm] steckt auch in jeder Menge M [mm] $\in \mathcal{M}$ [/mm] enthalten sein, denn sonst gebe es ja eine Menge M, die nicht in [mm] $\mathcal{N}$ [/mm] drinn ist und die Teilmengenrelation würde nicht mehr gelten.
Nun musst du das nurnoch schön mathematisch ausschreiben und vielleicht noch die leere Menge als Sonderfall angucken.

Und nochmal sorry, dass der Post vorhin etwas komisch bis falsch war...

Bezug
                        
Bezug
Bew Inklusion 2 Mengen v. Meng: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:27 Mi 03.11.2010
Autor: froehli

Das sind zwei Verschiedene Aufgaben.
Ich soll $ [mm] \bigcap \mathcal{N} \subseteq \bigcap \mathcal{M} [/mm] $ beweisen.
Das macht ja auch Sinn, denn die Schnittmenge von Mengen der Obermenge N kann ja auch eine Teilmenge einer Kleineren Menge von Mengen in N sein.

Aber nun habe ich mein ganzes Pamflet mehr oder minder abgegeben. Mal gucken, was die korrenktoren darauß ziehen :-/

Bezug
                                
Bezug
Bew Inklusion 2 Mengen v. Meng: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Fr 05.11.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Bew Inklusion 2 Mengen v. Meng: Antwort
Status: (Antwort) fertig Status 
Datum: 10:35 Mi 03.11.2010
Autor: angela.h.b.


> Gegeben seien zwei Mengen von Mengen M und N mit M
> [mm]\subseteq[/mm] N.
>  (1) [mm]\bigcup \mathcal{M} \subseteq \bigcup \mathcal{N}[/mm]
>  (2)
> [mm]\bigcap \mathcal{N} \subseteq \bigcup \mathcal{M}[/mm]
>  Lösung
> zur ersten.

Hallo,

ich finde, Dein Beweis ist Dir wirklich nett gelungen!
Verbesserungsvorschlag: wenn Du einen Schluß ziehst, solltest Du nicht nur [mm] "\Rightarrow" [/mm] schreiben, sondern auch sagen, warum das gilt.

Erstens wollen die Korrektoren das in der Regel wissen, und zweitens geht man sich nicht so leicht selbst auf den Leim, wenn man sich immer wieder fragt: "Warum eigentlich?".

>  
> Vorgabe: [mm]\mathcal{N}, \mathcal{M}[/mm] Mengen von mengen mit
> [mm]\mathcal{M} \subseteq \mathcal{N}[/mm]
>  Beweis: Sei a [mm]\in \bigcup \mathcal{M}.[/mm]
> Zu zeigen a \ in [mm]\bigcup \mathcal{N}[/mm]


>  Dann existiert T [mm]\in \mathcal{M}[/mm]  mit a [mm]\in[/mm] T

nach Def. von [mm] $\bigcup \mathcal{M}$ [/mm]

>  Nach Vorgabe ist [mm]\mathcal{M} \subseteq \bigcup \mathcal{N}[/mm]

Nein. Es ist [mm] $\mathcal{M} \subseteq \mathcal{N}$, [/mm] was Du auch meinst.

>  
> => T [mm]\in \mathcal{N}[/mm]

nach Def. von "Teilmenge".

>  => T [mm]\subseteq \bigcup \mathcal{N}[/mm]

Nach Def. von [mm] \bigcup \mathcal{N}$. [/mm]

>  
> => a [mm]\in \bigcup \mathcal{N}[/mm]

nach Def. "Teilmenge".

Damit ist gezeigt:

> für alle a [mm]\in \bigcup \mathcal{M}[/mm]
> gilt [mm]a\in \bigcup \mathcal{N}[/mm]
>  => [mm]\bigcup \mathcal{M} \subseteq \bigcup \mathcal{N}[/mm]

Gruß v. Angela



Bezug
                
Bezug
Bew Inklusion 2 Mengen v. Meng: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:15 So 07.11.2010
Autor: froehli

Ich habe mich eben noch einmal daran gesetzt, um den Beweis komplett aus eigener Kraft zu stemmen. Hierbei ist nun eine menge Weggefallen. Ich frage mich aber, ob es so auch Erkennbar ist, sprich die Fehler eher Formal sind.

Vorg: Seien [mm] \mathcal{M}, \mathcal{N} [/mm] Mengen mit [mm] \mathcal{M} \subseteq \mathcal{N} [/mm]
Beh: [mm] \bigcup \mathcal{M} \subseteq \bigcup \mathcal{N} [/mm]
Beweis: Sei X [mm] \in \mathcal{M} [/mm] und X [mm] \in \mathcal{N}, [/mm] da [mm] \mathcal{M} \subseteq \mathcal{N} [/mm] gilt.
So ex. a [mm] \in [/mm] X.
Damit ist a [mm] \in \mathcal{M} [/mm] und a [mm] \in \mathcal{N} [/mm]
Somit ergibt sich [mm] \bigcup \mathcal{M} \subseteq \bigcup \mathcal{N}. [/mm]

Bezug
                        
Bezug
Bew Inklusion 2 Mengen v. Meng: Antwort
Status: (Antwort) fertig Status 
Datum: 07:10 Mo 08.11.2010
Autor: angela.h.b.


> Vorg: Seien [mm]\mathcal{M}, \mathcal{N}[/mm] Mengen mit [mm]\mathcal{M} \subseteq \mathcal{N}[/mm]
>  
> Beh: [mm]\bigcup \mathcal{M} \subseteq \bigcup \mathcal{N}[/mm]
>  
> Beweis: Sei X [mm]\in \mathcal{M}[/mm] und X [mm]\in \mathcal{N},[/mm] da
> [mm]\mathcal{M} \subseteq \mathcal{N}[/mm] gilt.
>  So ex. a [mm]\in[/mm] X.
>  Damit ist a [mm]\in \mathcal{M}[/mm] und a [mm]\in \mathcal{N}[/mm]
>  Somit
> ergibt sich [mm]\bigcup \mathcal{M} \subseteq \bigcup \mathcal{N}.[/mm]
>  

Hallo,

ich jedenfalls kann Dir jetzt überhaupt nicht mehr folgen.

>  Somit
> ergibt sich [mm]\bigcup \mathcal{M} \subseteq \bigcup \mathcal{N}.[/mm]

Du mußt doch vorrechnen, wie aus [mm] a\in $\bigcup \mathcal{M} [/mm] folgt, daß [mm] a\in\bigcup \mathcal{N}$. [/mm]

Ich erkenne nicht, daß Du das tust(, und frage mich, mit welchem Ziel Du Deinen Beweis so entsetzlich verstümmelt hast.)

Mal noch ein paar grundsätzliche Dinge.

> Beweis: Sei X [mm] $\in \mathcal{M}$ [/mm] und X [mm] $\in \mathcal{N},$ [/mm] da
> [mm] $\mathcal{M} \subseteq \mathcal{N}$ [/mm] gilt.

Du meinst dies: Sei [mm] X\in \mathcal{M}. [/mm] Dann ist [mm] X\in \mathcal{N}, [/mm] da [mm] $\mathcal{M} \subseteq \mathcal{N}$ [/mm] gilt.

>Sei X [mm] $\in \mathcal{M}$ [/mm] und X [mm] $\in \mathcal{N},$ [/mm] da

> [mm] $\mathcal{M} \subseteq \mathcal{N}$ [/mm] gilt.
> So ex. a [mm] $\in$ [/mm] X.

Ich sehe keinen Grund dafür, daß es in X ein Element gibt.
Woraus folgerst Du die Existenz eines Elementes in X, daß also X nichtleer ist?

> Sei X [mm] $\in \mathcal{M}$ [/mm] und X [mm] $\in \mathcal{N},$ [/mm] da
> [mm] $\mathcal{M} \subseteq \mathcal{N}$ [/mm] gilt.
> So ex. a [mm] $\in$ [/mm] X.
> Damit ist a [mm] $\in \mathcal{M}$ [/mm]

Wieso? Es ist die Menge X ein Element von [mm] \mathcal{M}. [/mm]
Jetzt hast Du ein Element a von X. Wieso liegt das in [mm] \mathcal{M}? [/mm]
Ich sehe keinen Grund dafür.

> Somit
> ergibt sich [mm] $\bigcup \mathcal{M} \subseteq \bigcup \mathcal{N}.$ [/mm]

Wie sich das ergibt, erfahren wir leider nicht...

Gruß v. Angela






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]