matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchulPhysikBeugung am Gitter
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "SchulPhysik" - Beugung am Gitter
Beugung am Gitter < SchulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "SchulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beugung am Gitter: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:40 Fr 12.03.2010
Autor: Nils92

Aufgabe
Aufgabe 3:
Ein optisches Gitter mit 5000 Strichen pro cm wird mit parallelem weißem Glühlicht belechtet. Der Schirm hat die Form eines Halbzylinders, in dessen das Gitter steht.
a) Fertigen Sie eine Skizze an!
b) Bis zu welcher Ordnung kann das Spektrum vollständig beobachtet werden?
c) Welche Wellenlänge ist in der höchsten Ordnung gerade noch feststellbar?

Hallo,
bei a) habe ich bereits eine Zeichnung angefertigt:
Die Lichtstrahlen treffen orthogonal auf das Gitter und dann wird ein Interferenzmuster auf dem Halbzylinder sichtbar.
Der Halbtzylinder endet am Gitter, so wie ich das hier verstanden habe.

Bei b) habe ich das Problem, dass es gilt:

[mm] n\lambda [/mm] = [mm] sin(\alpha) [/mm] * g

doch wie muss ich jetzt weitermachen?

        
Bezug
Beugung am Gitter: Antwort
Status: (Antwort) fertig Status 
Datum: 18:00 Fr 12.03.2010
Autor: leduart

Hallo
zu b) kann [mm] \alpha>90°sein? [/mm]
wenn du das beantwortet hast weisst du, was das maximale n ist.
Gruss leduart

Bezug
                
Bezug
Beugung am Gitter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:22 Sa 13.03.2010
Autor: Nils92

Du meinst wohl [mm] \alpha \le [/mm] 90° sein.
Weil der Schirm bei 90° ja aufhört.
Und außerdem kann man Licht doch nicht über 90° beugen oder?



Bezug
                        
Bezug
Beugung am Gitter: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 Sa 13.03.2010
Autor: Event_Horizon

Hallo!

Du hast verstanden, daß der winkel maximal 90° groß werden kann. Dann schau mal, was die Formel nach Einsetzen dieser Erkenntnis sowie der anderen gegebenen Parameter so hergibt!

Bezug
                                
Bezug
Beugung am Gitter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:21 Sa 13.03.2010
Autor: Nils92

also soll ich jetzt [mm] \lambda_{min} [/mm] und [mm] \lambda_{max} [/mm] für [mm] \lambda [/mm] einsetzen?

naja hab das mal gemacht:

wir wissen, dass das spektrum von 390 - 780 nm reicht.
das heißt:

[mm] \lambda_{min}= [/mm] 390 nm
[mm] \lambda_{max}= [/mm] 780 nm

außerdem kennen wir g= [mm] \bruch{1}{500000} [/mm] m

dann gilt:

[mm] sin(\alpha)= \bruch{n\lambda}{g} [/mm]

[mm] \gdw \bruch{sin(\alpha)* g}{\lambda}= [/mm] n

gut nun wollen wir ja die maximale Ordnung wissen bei aufgabe b), das heißt [mm] \alpha [/mm] muss maximal also 90° werden:

[mm] \bruch{g}{\lambda_{min}}= [/mm] n und [mm] \bruch{g}{\lambda_{max}}= [/mm] n

mhh aber das mit [mm] lambda_{min} [/mm] und [mm] lambda_{max} [/mm] kann iwie nicht stimmen, weil ich einmal 5,128 und einmal 2,56 rausbekomme...

ich weiß damit nichts anzufangen

Bezug
                                        
Bezug
Beugung am Gitter: Antwort
Status: (Antwort) fertig Status 
Datum: 23:55 Sa 13.03.2010
Autor: Event_Horizon

Hallo!

doch, das ist schon ganz richtig so.


Unterschiedliche Wellenlängen produzieren unterschiedlich breite Spektren. Überleg mal: Wenn man nach dem ersten Maximum fragt, ergeben unterschiedliche Wellenlängen unterschiedliche Winkel bzw Entfernungen zum Maximum 0. Ordnung.

Enen Schönheitsfehler hat deine Rechnung noch: Es gibt nur ganze Ordnungen, kein 5,128tes Maximum. Das letzte sichtbare Maximum ist nicht bei 90°, sondern ein Stück vorher, es wäre das 5. Maximum. Du mußt deine Ergebnisse daher abrunden, sonst hast du alles richtig gemacht (Sofern du dich nicht verrechnet hast)

Bezug
                                                
Bezug
Beugung am Gitter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:49 So 14.03.2010
Autor: Nils92

gut und was ist dann mit [mm] \lambda_max? [/mm]

wenn ich das einsetze bekomme ich ja für n etwa 2,5 raus.

muss ich da dann abrunden und dann weiß ich dass das letzte vollkommen sichtbare spektrum, das 2. Ordnung ist?

und was muss ich dann bei c) machen?

weil da muss ich ja die maximale wellenlänge bestimmen, ich weiß aber nicht von welcher ordnung ich jetzt ausgehen muss...

Bezug
                                                        
Bezug
Beugung am Gitter: Antwort
Status: (Antwort) fertig Status 
Datum: 12:58 So 14.03.2010
Autor: leduart

Hallo
Du hast die höchste Ordnung 5 raus. das war bei [mm] \lambda_{min} [/mm]
Damit ist die Frage c) beantwortet, denn nach der Wellenlänge war gefragt.Da die 5 gerundet war, kannst du evt. noch die Wellenlänge ausrechnen, die bei n=5 und [mm] \alpha=90° [/mm] rauskommt. die ist theorethisch grade am Rand deines Zylinders, und etwas grösser als [mm] \lambda_{min} [/mm]
Deine Zahlenrechnungen hab ich nicht nachgeprüft.
Gruss leduart

Bezug
                                                                
Bezug
Beugung am Gitter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:56 So 14.03.2010
Autor: Nils92

Also ist die 2. Ordnung, die die noch vollständig sichtbar ist und die 5. Ordnung ist die maximale?

dann ist ja die maximale Wellenlänge der 5. Ordnung dies hier:

[mm] \lambda= \bruch{\bruch{1}{500000}}{5}=400nm [/mm]

Bezug
                                                                        
Bezug
Beugung am Gitter: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 So 14.03.2010
Autor: leduart

Hallo
ja, das ist richtig
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "SchulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]