matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesBetragsungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Sonstiges" - Betragsungleichung
Betragsungleichung < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betragsungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:55 Sa 19.05.2012
Autor: Mathe-Andi

Wie vereinige ich denn folgende Teillösungsmengen?

Die Aufgabe lautet |x-1| [mm] \ge [/mm] |x+2|

Fall 1a

x-1 [mm] \ge [/mm] 0
x+2 [mm] \ge [/mm] 0

x [mm] \ge [/mm] 1
x [mm] \ge [/mm] -2
0 [mm] \ge [/mm] 3

Fall 1b

x-1 [mm] \ge [/mm] 0
x+2 < 0

x [mm] \ge [/mm] 1
x > -2
x [mm] \ge [/mm] -0,5

Fall 2a

x-1 < 0
x+2 [mm] \ge [/mm] 0

x > 1
x [mm] \ge [/mm] -2
x [mm] \le [/mm] -0,5

Fall 2b

x-1 < 0
x+2 < 0

x > 1
x > -2
0 [mm] \ge [/mm] -3

Meine Überlegungen

Fall 1a
ist falsch, da die letzte Aussage immer falsch ist. Dieser Fall wird nicht weiter beachtet.

Fall 1b
ich vereinige die drei Ungleichungen in x [mm] \ge [/mm] 1

Fall 2a
ich kann zwar die korrekte Aussage treffen -0,5 [mm] \ge [/mm] x [mm] \ge [/mm] -2, dennoch steht dies dann mit x > 1 im Widerspruch.
Und die Aussage -0,5 [mm] \ge [/mm] x > 1 ist nicht erfüllbar.
Ich formuliere es also so: -0,5 [mm] \ge [/mm] x [mm] \vee [/mm] x > 1

Fall 2b
die Ungleichung 0 [mm] \ge [/mm] -3 ist immer gültig. Bleiben noch die anderen beiden, die ich zu x > 1 vereinige.


Vereinigen aller Teillösungsmengen zur Gesamtlösungsmenge

x [mm] \ge [/mm] 1
x [mm] \le [/mm] -0,5
x > 1
x > 1


Ich würde es so formulieren:

[mm] \IL=\{x| x \le -0,5 \vee x > 1\} [/mm]

Warum ist x > 1 aber falsch? Meine Lösungen sagen, dass [mm] y_{1} \ge y_{2} [/mm] nur für x [mm] \le [/mm] -0,5 erfüllt ist.

x > 1 resultiert doch aber aus der Falluntersuchung aller Fälle und es müsste dafür doch auch gültig sein!?


        
Bezug
Betragsungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Sa 19.05.2012
Autor: rabilein1


> Die Aufgabe lautet |x-1| [mm]\ge[/mm] |x+2|

Das Einfachste ist meines Erachtens:
Du zeichnest den Graph von f(x) = |x-1|, dann von g(x) = |x+2|
und dann schaust du, wo  f(x) [mm]\ge[/mm] g(x) ist.

Bezug
                
Bezug
Betragsungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:21 Sa 19.05.2012
Autor: Mathe-Andi

Der Graph ist abgebildet. An ihm sieht man das. Wie kann ich aber rechnerisch aussagen, dass x > 1 falsch ist?

Bezug
                        
Bezug
Betragsungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 Sa 19.05.2012
Autor: M.Rex

Hallo


> Der Graph ist abgebildet. An ihm sieht man das. Wie kann
> ich aber rechnerisch aussagen, dass x > 1 falsch ist?

Du hast:

[mm] $|x-1|\ge|x+2|$ [/mm]

Betrachten wir den Fall x>1, dann sind sowohl x-1 als auch x+2 größer als Null, und man kann die Betragsstriche Weglassen, also:

[mm] $|x-1|\ge|x+2|$ [/mm]
[mm] $\Rightarrow x-1\ge [/mm] x+2$
[mm] $\Leftrightarrow -1\ge2$ [/mm]

Und das ist eine Falschaussage, also hat dieser Fall keine Lösung.

Marius


Bezug
                                
Bezug
Betragsungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:34 Sa 19.05.2012
Autor: Mathe-Andi

Klasse, so einfach. Danke! :-)

Bezug
        
Bezug
Betragsungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:12 So 20.05.2012
Autor: fred97

Ohne Fallunterscheidung:

|x-1| $ [mm] \ge [/mm] $ |x+2|  [mm] \gdw (x-1)^2 \ge (x+2)^2 \gdw [/mm] ....    jetzt Du.

FRED


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]