matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Betragsfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - Betragsfunktion
Betragsfunktion < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Betragsfunktion: Hilfestellung oder Ansatz
Status: (Frage) beantwortet Status 
Datum: 14:54 Fr 23.10.2009
Autor: marcu83

Aufgabe
f(x) ≔ ⎮x + 2⎮ - ⎮3 - x⎮ +x-2

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich soll diesen Ausdruck abschnittsweise lösen, leider habe ich keine Idee. Ich weiß aber schon den ABS aus x. Danke für eure Hilfe!!

        
Bezug
Betragsfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Fr 23.10.2009
Autor: Al-Chwarizmi


> f(x) ≔ ⎮x + 2⎮ - ⎮3 - x⎮ +x-2
>  
> Ich soll diesen Ausdruck abschnittsweise lösen, leider
> habe ich keine Idee. Ich weiß aber schon den ABS aus x.


Hallo Marcus,

was meinst du denn mit "lösen" ?

Gilt es, den Graph der Funktion zu zeichnen oder aber
z.B. die Gleichung  f(x)=0  zu lösen ?

Für die graphische Lösung würde ich mir zunächst
die Summandenfunktionen $\ [mm] s_1(x)=|x+2|\ [/mm] ,\ [mm] s_2(x)=-|3-x]\ [/mm] ,\ [mm] s_3(x)=x-2$ [/mm]
skizzieren und dann überlagern.

Für eine abschnittsweise Definition der Funktion
kann man sich klar machen, dass f stückweise
linear sein muss, wobei die Nahtstellen zwischen
den linearen Teilstücken da liegen müssen, wo
die Betragsfunktionen [mm] s_1 [/mm] und [mm] s_2 [/mm] jeweils ihren
Knick haben.

LG    Al-Chw.


Bezug
                
Bezug
Betragsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:20 Fr 23.10.2009
Autor: marcu83

es geht darum die funktion abschnittsweise darzustellen. also, ja die einzelnen teilstücke darstellen mit den verschiedenen fällen. mir fehlt da immer der ansatz wenn ich so eine aufgabe sehe. was muss ich zuerst auf <oder> 0 untersuchen. wo fange ich da an? gibts da tricks?

zu deinem ersten punkt fällt mir nichts ein, da wir das noch nicht hatten..

Bezug
                        
Bezug
Betragsfunktion: Stichwort: Fallunterscheidung
Status: (Antwort) fertig Status 
Datum: 15:36 Fr 23.10.2009
Autor: karma

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo und guten Tag,

das Stichwort zur Betragsfunktion ist Fallunterscheidung.

$| f(x) |=f(x)$ für $f(x)>=0$ und
$| f(x) |=(-1)*f(x)$ für $f(x)<0$.

Im vorliegenden Fall ist der Verlauf des Funktionsgraphen
vor, zwischen und hinter
den Knickstellen
$x_{1}=-2$ und $x_{2}=3$
von Interesse.

Schönen Gruß
Karsten

PS:  Übrigens kann man
      $|f(x)|$ auch durch $\sqrt{f(x)^{2}$
      ausdrücken.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]