matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVK 37: KurvendiskussionenBeträge und Kurvendiskussion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "VK 37: Kurvendiskussionen" - Beträge und Kurvendiskussion
Beträge und Kurvendiskussion < VK 37: Kurvendiskussionen < Schule < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "VK 37: Kurvendiskussionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beträge und Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:24 Di 10.01.2012
Autor: Benja91

Aufgabe
[mm] f(x)=\bruch{|x|}{x(^{2}-1)} [/mm]



Hallo,

ich habe diese Frage in keinem anderen Forum gestellt:

Ich habe einige Probleme mit dem Betrag in der Funktion, was aber wohl eher an einem Verständnisproblem vom Betrag im allgemeinen liegt.

|x|=x für x>1 und |x|=-x für x<1 , oder?

Meine Polstellen sind ja x=0, x=1, x=-1
Will ich nun die Grenzwert für eine Schiefe Asymptote  y=ax+b berechnen, dann habe ich ja:

Die Grenzwerte sind natürlich für x --> 0. Leider wird es irgendwie bei mir falsch angezeigt.

[mm] a=limes_{x\rightarrow\0}\bruch{f(x)}{x}=f(x)=\bruch{-x}{x*(x^{2}-1)} [/mm] für den linken Grenzwert

und

[mm] a=limes_{x\rightarrow\0}\bruch{f(x)}{x}=f(x)=\bruch{x}{x*(x^{2}-1)} [/mm] für den rechten Grenzwert, oder?

Ist das richtig so, oder habe ich den Betrag hier falsch aufgelöst?

Muss ich bei den Ableitungen dann auch immer einen Unterschied machen für x<0 und x>0?

Danke für eure Hilfe.
Gruß
Benja

        
Bezug
Beträge und Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:53 Di 10.01.2012
Autor: leduart

Hallo
wie kommst du auf ne "schiefe Assymptote "
du hast polstellen bei [mm] x=\pm1 [/mm]  und keine bei x=0 und für x gegen [mm] \pm\infty [/mm] die x- Achse als Assymptote .
die Differenzierbarkeit bei x=0 musst du untersuchen dabei links und rechts einzeln, diffb ist die fkt nur in x=0 falls die übereinstimmen.
gruss leduart

Bezug
                
Bezug
Beträge und Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:01 Di 10.01.2012
Autor: Benja91

Danke für die Antwort. Aber warum habe ich bei x=0 keine Polstelle? Der Nenner ist doch 0 für x=0 und [mm] x=\pm1 [/mm] und Polstellen sind doch die Nullstellen vom Nenner, oder hab ich da etwas falsche verstanden?

Bezug
                        
Bezug
Beträge und Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:05 Di 10.01.2012
Autor: MathePower

Hallo Benja91,

> Danke für die Antwort. Aber warum habe ich bei x=0 keine
> Polstelle? Der Nenner ist doch 0 für x=0 und [mm]x=\pm1[/mm] und
> Polstellen sind doch die Nullstellen vom Nenner, oder hab
> ich da etwas falsche verstanden?  


Die "0" ist Nullstelle des Nenners und zugleich Nullstelle des Zählers.
Daher is die "0" keine Polstelle.


Gruss
MathePower

Bezug
                                
Bezug
Beträge und Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 Di 17.01.2012
Autor: Benja91

Nochmal eine kurze Verständnisfrage zu Beträgen in einer Kurvendiskussion. Muss ich dann bei den Ableitungen immer eine Funktion mit x=-x verwenden und eine mit x=+x?

Weil |x|=-x für x<0....

Vielen Dank :)

Bezug
                                        
Bezug
Beträge und Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:09 Di 17.01.2012
Autor: MathePower

Hallo Benja91,

> Nochmal eine kurze Verständnisfrage zu Beträgen in einer
> Kurvendiskussion. Muss ich dann bei den Ableitungen immer
> eine Funktion mit x=-x verwenden und eine mit x=+x?
>  


Nein.

Du kannst es Dir hier einfach machen:

[mm]\vmat{x}=\alpha*x[/mm]

, wobei [mm]\alpha=\left\{ \begin{matrix} -1 & x <0 \\ 1 & x \ge 0 \end{matrix} \right [/mm]

Diese Substitution auf die Funktion anwenden und dann ableiten.


> Weil |x|=-x für x<0....
>  
> Vielen Dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "VK 37: Kurvendiskussionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]