matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisBeträge b. Int. von $\frac1x$
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - Beträge b. Int. von $\frac1x$
Beträge b. Int. von $\frac1x$ < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Beträge b. Int. von $\frac1x$: ..schulpraktischer Zweck?
Status: (Frage) beantwortet Status 
Datum: 11:55 Sa 20.04.2013
Autor: Riesenradfahrrad

Beitrag nach Bearbeitung:

Hallo!

wahrscheinlich habt schon oft gehört oder selber gepredigt:
[mm] $\int\frac1x\mathrm dx=|\ln [/mm] x|+c$ - vergiss bloss nicht den Betrag!!!

Nun gebe ich zu diesem "Vergessen" mal meinen Gedanken:

wir betrachten die [mm] $\ln$-Funktion [/mm] mit komplexem Argument:
[mm] $$\ln(z) [/mm] = [mm] \ln(|z|e^{i\varphi})=\ln(|z|)+\ln(e^{i\varphi})=\ln(|z|)+ i\varphi$$ [/mm]  
[mm] $\varphi$ [/mm] ist eine reelle Zahl, also ist [mm] $i\varphi$ [/mm] eine imaginäre Zahl, und es gilt:
[mm] $$\ln(|z|) [/mm] + c = [mm] \ln(z),\quad\text{wobei $c$ eine imaginäre Zahl ist}.$$ [/mm]
Wählen wir nun
[mm] $$d=i\varphi+r,\quad r\in\mathbb [/mm] R$$
in
[mm] $$\int \frac1z\mathrm dz=\ln(|z|) +d\quad d\in\mathbb [/mm] C$$
so ergibt sich doch völlig legitim
[mm] $$\int \frac1z\mathrm dz=\ln(|z|) +d=\ln(z)+r=:F(z)$$ [/mm]
Und da dies für komplexe Argument gilt, so muss dies doch auch für reelle Argumente gelten.

Lange Rede, Sinn meiner Behauptung: [mm] $F(x)=\ln(x)$ [/mm] - auch ohne Betrag - ist eine mögliche Stammfunktion von [mm] $f(x)=\frac1x$. [/mm]

Was meint ihr dazu?


        
Bezug
Beträge b. Int. von $\frac1x$: Antwort
Status: (Antwort) fertig Status 
Datum: 12:09 Sa 20.04.2013
Autor: fred97


> Hallo!
>  
> wahrscheinlich habt schon oft gehört oder selber
> gepredigt:
>  [mm]\int\frac1x\mathrm dx=|\ln x|+c[/mm] - vergiss bloss nicht den
> Betrag!!!

Ja, aber bitte an der richtigen Stelle !!!  Also:

[mm]\int\frac1x\mathrm dx=\ln |x|+c[/mm]


>  
> Nun gebe ich zu diesem "Vergessen" mal meinen Gedanken:
>  
> wir betrachten die [mm]\ln[/mm]-Funktion mit komplexem Argument:
> [mm]\ln(z) = \ln(|z|e^{i\varphi})=\ln(|z|)+\ln(e^{i\varphi})=\ln(|z|)+ i\varphi[/mm]

Im Komplexen ist ln mehrdeutig ! Ist [mm] \varphi [/mm] ein Argument von z, so bekommst Du alle Log. von z durch

[mm]\ln(z) =\ln(|z|)+ i\varphi+ 2k \pi *i[/mm]   (k [mm] \in \IZ) [/mm]


>  
> [mm]\varphi[/mm] ist eine reelle Zahl, also ist [mm]i\varphi[/mm] eine
> imaginäre Zahl, und es gilt:
>  [mm]\ln(|x|) + c = \ln(x),\quad\text{wobei $c$ eine imaginäre Zahl ist}.[/mm]

Ja, was jetzt ? x [mm] \in \IR [/mm] ? oder z [mm] \in \IC [/mm] ? Ist jetzt z=x


>  




Ab jetzt wirds (für mich ) völlig unverständlich !

> Wählen wir nun
>  [mm]d=-i\varphi+r,\quad r\in\mathbb R[/mm]
>  in
>  [mm]\int \frac1x\mathrm dx=\ln(x) +d\quad d\in\mathbb C[/mm]
>  so
> ergibt sich doch völlig legitim
>  [mm]\int \frac1x\mathrm dx=\ln(x) +d=:F(x)[/mm]
> mit [mm]F(x)[/mm] als reellwertiger Funktion -?
>  Die Integrationskonstante kann also dieStamm-Funktion in
> zwei Dimensionen verschieben:
> 1. zum einen in [mm]y[/mm]-Richtung
>  2. vom reellen ins komplexe
>  
> In der Schule wird das 2. demnach nicht berücksichtigt und
> sogar leider als falsch deklariert! - oder mache ich hier
> selber nen Fehler?


Da blick ich nicht mehr durch. Wäre es möglich, dass Du Dich klar ausdrückst ?

>  
> Was meint ihr dazu?

Machen wirs kurz:

In [mm] \IR [/mm] \ { 0 } hat die Funktion 1/x die Stammfunktionen ln(|x|) +c

In [mm] \IC [/mm] \ { 0 } hat die Funktion 1/z keine Stammfunktion.


FRED

>  


Bezug
                
Bezug
Beträge b. Int. von $\frac1x$: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:28 Sa 20.04.2013
Autor: Riesenradfahrrad

Hallo Fred,

vielen Dank für rasche! Antwort.
Ich habe versucht, mich verständlicher auszudrücken, und den Beitrag bearbeitet.

Frage bleibt für mich:

Ist $F(x)=ln(x)$ eine mögliche Stammfunktion von [mm] $f(x)=\frac1x$?? [/mm]



Bezug
                        
Bezug
Beträge b. Int. von $\frac1x$: Antwort
Status: (Antwort) fertig Status 
Datum: 12:34 Sa 20.04.2013
Autor: fred97


> Hallo Fred,
>  
> vielen Dank für rasche! Antwort.
>  Ich habe versucht, mich verständlicher auszudrücken, und
> den Beitrag bearbeitet.
>
> Frage bleibt für mich:
>  
> Ist [mm]F(x)=ln(x)[/mm] eine mögliche Stammfunktion von
> [mm]f(x)=\frac1x[/mm]??

Ja, für x>0

FRED

>  
>  


Bezug
                                
Bezug
Beträge b. Int. von $\frac1x$: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:02 Sa 20.04.2013
Autor: Riesenradfahrrad


> > Frage bleibt für mich:
>  >  
> > Ist [mm]F(x)=ln(x)[/mm] eine mögliche Stammfunktion von
> > [mm]f(x)=\frac1x[/mm]??
>  
> Ja, für x>0
>  

..mmh... also ich find das alles gar nicht so trial.
Es scheint doch wohl so zu sein, dass man sehr wohl über ganz [mm] $\mathbb [/mm] R$ (außer 0) integrieren kann, die Stammfunktion aber nur für x>0 reellwertig ist. Demnach dürfte ein Schüler im Abitur die Antwort [mm] "$\ln(x)$ [/mm] ist eine Stammfunktion von [mm] $\frac1x$" [/mm] geben - [mm] \textit{ohne} [/mm] erwähnen zu müssen: $x>0$.
  


Bezug
                                        
Bezug
Beträge b. Int. von $\frac1x$: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Sa 20.04.2013
Autor: fred97

Wir betrachte die Funktion f(x):=1/x  für x [mm] \ne [/mm] 0

f hat auf (0, [mm] \infty) [/mm] die Stammfunktion ln(x)

f hat auf ( - [mm] \infty, [/mm] 0) die Stammfunktion ln(-x)

Fazit:

f hat auf [mm] \IR [/mm] \ { 0 } die Stammfunktion ln(|x|)

Jetzt klar ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]