matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenBestimmung von y
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Bestimmung von y
Bestimmung von y < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung von y: Tipp
Status: (Frage) beantwortet Status 
Datum: 17:28 Fr 12.01.2007
Autor: montana

Aufgabe
Man bestimme y aus [mm] y'=y/x\wurzel{1+(y^2/x^2)} [/mm]

hallo...habe bei der aufgabe als substitution u=y/x genommen...bekomme dann als [mm] u'=-\wurzel{1+u^2}/x [/mm] heraus.....dann setze ich das gleich du/dx un bekomme.....Integral [mm] 1/\wurzel{1+u^2}*du=\integral{ - 1/x dx} [/mm] .....wenn ich dann integriere bekomme ich doch [mm] \ln(\wurzel{u^2+1}+u)=-\ln(x)+c [/mm] heraus...dieses dann e-hoch...=> [mm] \wurzel{u^2+1}+u=1/x+c [/mm]
......ist das bis dahin überhaupt richtig?.....als ergebnis für u sollte (x/2c) * [mm] ((c^2/x^2)-1) [/mm] herauskommen...könnte mir jmd vielleicht weiterhelfen?..thanks a lot...mfg alex

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmung von y: Antwort
Status: (Antwort) fertig Status 
Datum: 02:05 So 14.01.2007
Autor: MatthiasKr

Hallo alex,
> Man bestimme y aus [mm]y'=y/x\wurzel{1+(y^2/x^2)}[/mm]
>  hallo...habe bei der aufgabe als substitution u=y/x
> genommen...bekomme dann als [mm]u'=-\wurzel{1+u^2}/x[/mm]
> heraus.....

ich fürchte, hier hast du bereits einen fehler gemacht. substitution $u=y/x$ ist der richtige ansatz, allerdings musst du auch $y'$ richtig transformieren. es ist [mm] $y=u\cdot [/mm] x$ und damit $y'=u' x+ u$.
als transformierte dgl. erhalte ich folglich

[mm] $u'=\frac{u\sqrt{1+u^2}-u}{x}$. [/mm]

versuch es damit nochmal.

gruß
matthias



Bezug
                
Bezug
Bestimmung von y: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:29 Mo 15.01.2007
Autor: montana

hhhm habe es gerade nochmal durchgerechnet und mir ist dabei aufgefallen das die aufgabenstellung nicht so ist wie sie eigentlich sein sollte...y´ ist nämlich y/x - Wurzel und nicht mal Wurzel....dann müste glaub ich auch mein ansatz stimmen..nur wie man dann von u´= - [mm] Wurzel(1+u^2) [/mm] / x auf u kommt weiß ich nicht...als erbegnis sollte (x/2C) * ((C²/x²)-1) herauskommen...danke schonmal...mfg alex

Bezug
                        
Bezug
Bestimmung von y: Antwort
Status: (Antwort) fertig Status 
Datum: 01:36 Di 16.01.2007
Autor: MatthiasKr


> hhhm habe es gerade nochmal durchgerechnet und mir ist
> dabei aufgefallen das die aufgabenstellung nicht so ist wie
> sie eigentlich sein sollte...y´ ist nämlich y/x - Wurzel
> und nicht mal Wurzel....dann müste glaub ich auch mein
> ansatz stimmen..

:-) ok, dann macht die aufgabe mehr sinn und deine rechnung stimmt soweit!

>nur wie man dann von u´= - [mm]Wurzel(1+u^2)[/mm] /

> x auf u kommt weiß ich nicht...als erbegnis sollte (x/2C) *
> ((C²/x²)-1) herauskommen...danke schonmal...mfg alex

das laeuft doch am ende auf die bestimmung von

[mm] $\int \frac{1}{\sqrt{u^2+1}}\,du$ [/mm]

hinaus. schau mal bei wikipedia in der integraltabelle nach, da wirst du die stammfunktion finden. ist eine trigonometrische funktion.


gruss

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]