matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSteckbriefaufgabenBestimmung von funktionstermen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Steckbriefaufgaben" - Bestimmung von funktionstermen
Bestimmung von funktionstermen < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung von funktionstermen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:21 Mo 19.09.2011
Autor: juna92

Aufgabe 1
Bestimmten Sie jeweils den Funktionsterm.
a) Der Graph einer ganzrationalen Funktion dritten Grades berührt die x-Achse im Ursprung und hat an der Nullstelle x= -3 die Steigung 6.

Aufgabe 2
b)Der Graph einer ganzrationalen Funktion dritten Grades hat einen Tiefpunkt bei T(0|3) und einen Wendepunkt bei W(1|5).

Aufgabe 3
c)Der Graph einer ganzrationalen Funktion vierten Grades ist achsensymmetrisch zur y-Achse. Er schneidet die y- Achse bei 2 und hat einen Tiefpunkt bei T(2|-6).

Hallo.
Wie kann ich die Angaben der Teilaufgaben nutzen, damit ich auf die ganzrationale Funktion komme? Brauche ich auch die Ableitung?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Bestimmung von funktionstermen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:27 Mo 19.09.2011
Autor: fred97


> Bestimmten Sie jeweils den Funktionsterm.
>  a) Der Graph einer ganzrationalen Funktion dritten Grades
> berührt die x-Achse im Ursprung und hat an der Nullstelle
> x= -3 die Steigung 6.
>  b)Der Graph einer ganzrationalen Funktion dritten Grades
> hat einen Tiefpunkt bei T(0|3) und einen Wendepunkt bei
> W(1|5).
>  c)Der Graph einer ganzrationalen Funktion vierten Grades
> ist achsensymmetrisch zur y-Achse. Er schneidet die y-
> Achse bei 2 und hat einen Tiefpunkt bei T(2|-6).
>  Hallo.
>  Wie kann ich die Angaben der Teilaufgaben nutzen, damit
> ich auf die ganzrationale Funktion komme? Brauche ich auch
> die Ableitung?

Ja.


Zu Aufgabe 1:

Ansatz: [mm] $f(x)=ax^3+bx^2+cx+d$ [/mm]

Die Angaben: "Der Graph einer ganzrationalen Funktion dritten Grades berührt die x-Achse im Ursprung und hat an der Nullstelle x= -3 die Steigung 6" liefern:

    f(0)=0  , f'(0)=0,  f(-3)=0 und f'(-3)=6.

Daraus erhältst Du 4 Gleichungen für die Unbekannten a,b,c und d.

Hilft das ?

FRED

>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
Bestimmung von funktionstermen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Mo 19.09.2011
Autor: juna92

Woher weiß ich, welchen Wert ich dann wo in die Funktion einsetzen muss? Ist die Reihenfolge egal?

Bezug
                        
Bezug
Bestimmung von funktionstermen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Mo 19.09.2011
Autor: fred97


> Woher weiß ich, welchen Wert ich dann wo in die Funktion
> einsetzen muss?




Nochmal:

"Der Graph einer ganzrationalen Funktion dritten Grades berührt die x-Achse im Ursprung und hat an der Nullstelle x= -3 die Steigung 6. "

1. Eigenschaft: der Graph geht durch den Ursprung, also: f(0)=0

2. Eigenschaft: der Graph  berührt die x-Achse im Ursprung. D.h. : der Graph hat im Ursprung eine waagrechte Tangente, also: f'(0)=0

3. Eig.:  Nullstelle x= -3 , also : f(-3)=0

4. Eig.: in x=-3 hat der Graph die Steigung 6, also: f'(-3)=6

> Ist die Reihenfolge egal?  

Ja

FRED




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]