matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenBestimmung von Grenzwerten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - Bestimmung von Grenzwerten
Bestimmung von Grenzwerten < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung von Grenzwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:21 So 29.04.2007
Autor: Leader

Aufgabe
Bestimme den Grenzwert

[mm] \limes_{n\rightarrow\infty} [/mm] ( 1 + [mm] \bruch{7}{n} )^n [/mm]

Hallo,


ich hätte gern einmal gewusst, wie man im Allgemeinen Grenzwerte von Folgen bestimmt. Ich rechne es mal an einer Übungsaufgabe vor (wie ich es intuitiv machen würde), wüsste aber gern, ob das der allgemeine mathematisch korrekte Weg ist oder ob man das anders macht (insbesondere erscheint mir meine Herangehensweise etwas sehr einfach).


Meine Vorgehensweise wäre:

1. Der Bruch 7/n ist offensichtlich eine Nullfolge, strebt also gegen 0 und braucht daher nicht weiter berücksichtigt werden (dies ist ein Grenzwertgesetz).
2. Es bleibt nun nur noch [mm] 1^n [/mm] übrig. Dies ergibt immer 1. Also ist der Grenzwert der Folge 1.


LG,
Leader.

        
Bezug
Bestimmung von Grenzwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 So 29.04.2007
Autor: schachuzipus

Hallo Leader,

da hast du dir aber gleich ne harte Folger ausgesucht.

Ganz so einfach ist die Sache hier nicht, da du noch das ^n hinter der Klammer hast.

Die "berühmte" Folge [mm] $\left(1+\frac{1}{n}\right)^n$ [/mm] strebt nämlich für [mm] $n\rightarrow\infty$ [/mm] gegen $e$

Und damit [mm] $\left(1+\frac{\red{7}}{n}\right)^n$ [/mm] gegen [mm] $e^\red{7}$ [/mm]


Gruß

schachuzipus

Bezug
                
Bezug
Bestimmung von Grenzwerten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:07 So 29.04.2007
Autor: Leader

Und wie geht man etwa vor, um auf dieses Ergebnis zu kommen?

Bezug
                        
Bezug
Bestimmung von Grenzwerten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 So 29.04.2007
Autor: angela.h.b.


> Und wie geht man etwa vor, um auf dieses Ergebnis zu
> kommen?

Hallo,

ich würde so vorgehen:

Da Du den Grenzwert bestimmen sollst, steht dessen Existenz ja nicht mehr zur Debatte.

Wenn die Folge [mm] a_n:= [/mm]  ( 1 + [mm] \bruch{7}{n} )^n [/mm]  konvergiert, konvergiert jede Teilfolge gegen denselben Grenzwert.

Also ist $ [mm] \limes_{n\rightarrow\infty} [/mm] $ ( 1 + $ [mm] \bruch{7}{n} )^n [/mm] $= $ [mm] \limes_{n\rightarrow\infty} [/mm] $ ( 1 + $ [mm] \bruch{7}{7n} )^{7n} [/mm] $= $ [mm] \limes_{n\rightarrow\infty} [/mm] $ ( 1 + $ [mm] \bruch{1}{n} )^{7n} [/mm] $= $ [mm] (\limes_{n\rightarrow\infty} [/mm] $ ( 1 + $ [mm] \bruch{1}{n} )^n)^7 [/mm] $

Den Grenzwert [mm] \limes_{n\rightarrow\infty} [/mm] $ ( 1 + $ [mm] \bruch{1}{n} )^n [/mm] kennt "man".

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]