matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10Bestimmung von Funktionswerten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Mathe Klassen 8-10" - Bestimmung von Funktionswerten
Bestimmung von Funktionswerten < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung von Funktionswerten: sin(45°) exakt bestimmen
Status: (Frage) beantwortet Status 
Datum: 15:41 Fr 16.03.2007
Autor: Silicium

Aufgabe
Bestimme den exakten Funktionswert von sin(45°)

Hallo,
wir haben heute in der Schule gelernt, den exakten Funktionswert von sin(30°), cos(60°) und sin(60°) zu bestimmen. Als Hausaufgabe sollen wir den exakten Funktionswert von sin(45°) bestimmen. Der Tipp unserer Lehrerin: "Erweitert das Dreieck". Nun tüftle ich schon eine ganz Weile daran, allerdings kam mir noch nicht der entscheidende Funke. In meiner Internetrecherche bin ich auf folgendes Dokument gestoßen: http://www.herder-oberschule.de/madincea/aufg0010/sin-fktw.pdf. Diese gibt mir als Tipp [Hinweis: Satz des Pythagoras]. Welchen Tipp soll ich nun befolgen? Den des Dokuments, den meiner Lehrerin oder beide?
Um den Satz des Pythagoras anzuwenden, brauche ich 2 Seiten im Dreieck, deren Länge ich kenne. Ich kenne aber nur eine Seite, die Hypotenuse, deren Wert 1 ist. Eine der beiden anderen Seite ist dann sin(45°). Ich habe versucht, das Dreieck in alle Richtungen zu erweitern, aber es bleibt immer nur eine Seite, die Hypotenuse mit ihrem Wert 1, bekannt. Könnt ihr mir weitere Lösungsvorschläge mitteilen?

Vielen Dank,
Silicium

        
Bezug
Bestimmung von Funktionswerten: gleichschenkliges Dreieck
Status: (Antwort) fertig Status 
Datum: 15:53 Fr 16.03.2007
Autor: Loddar

Hallo Silicium!


Bei einem rechtwinkligen Dreieck mit [mm] $\alpha [/mm] \ = \ 45°$ handelt es sich doch um ein gleichschenkliges Dreieck, da [mm] $\beta [/mm] \ = \ [mm] 180°-\gamma-\alpha [/mm] \ = \ 180°-90°-45° \ = \ 45°$ . Das heißt: beide Katheten haben dieselbe Länge.

Damit hast Du nun für den Ansatz mit dem Satz des Pythagoras nur noch eine Unbekannte Größe:

[mm] $k^2+k^2 [/mm] \ = \ [mm] h^2 [/mm] \ = \ [mm] 1^2$ [/mm]


Gruß
Loddar


Bezug
                
Bezug
Bestimmung von Funktionswerten: Falsches Ergebnis
Status: (Frage) beantwortet Status 
Datum: 23:16 Fr 16.03.2007
Autor: Silicium

Hallo,
vielen Dank für deine Antwort. Meine Rechnung sieht dank deinem Lösungsansatz nun so aus:
a²+b²=c²; b²=a²
a²+a²=1 [mm] \gdw [/mm] 2a²=1
[mm] \wurzel{\bruch{1}{2}}=a. [/mm]
Allgemein bekannt ist aber, dass sin(45°) = [mm] \bruch{1}{2}\wurzel{2} [/mm] gilt.

Wo liegt mein Fehler?

Bezug
                        
Bezug
Bestimmung von Funktionswerten: kein Fehler
Status: (Antwort) fertig Status 
Datum: 23:29 Fr 16.03.2007
Autor: Loddar

Hallo Silicium!


Da liegt kein Fehler vor (auch nicht Deinerseits). Beide Terme sind identisch: das Verfahren heißt "rational machen des Nenners".

[mm] $\wurzel{\bruch{1}{2}} [/mm] \ = \ [mm] \bruch{1}{\wurzel{2}}*\blue{\bruch{\wurzel{2}}{\wurzel{2}}} [/mm] \ = \ [mm] \bruch{\wurzel{2}}{2} [/mm] \ = \ [mm] \bruch{1}{2}*\wurzel{2}$ [/mm]


Gruß
Loddar


Bezug
                                
Bezug
Bestimmung von Funktionswerten: Verstanden
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:01 Sa 17.03.2007
Autor: Silicium

Hallo,
vielen Dank für die ausführliche Erklärung, nun habe ich es verstanden :).

Viele Grüße,
Silicium

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]